
一、选择题
1.直角三角形两直角边长为a,b,斜边上高为h,则下列各式总能成立的是( )
A.ab=h2 .a2+b2=2h2 . .
2.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( )
A.7 .6 .5 .4
3.已知函数y=,则自变量x的取值范围是( )
A.﹣1<x<1 .x≥﹣1且x≠1 .x≥﹣1 .x≠1
4.对于函数y=2x+1下列结论不正确是( )
A.它的图象必过点(1,3)
B.它的图象经过一、二、三象限
C.当x>时,y>0
D.y值随x值的增大而增大
5.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )
A.众数 .平均数 .中位数 .方差
6.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为
A.9 .6 .4 .3
7.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是( )
A.- .﹣1+ .﹣1- .1-
8.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是( )
A.6 .12 .24 .不能确定
9.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:
| 颜色 | 黄色 | 绿色 | 白色 | 紫色 | 红色 |
| 数量(件) | 120 | 150 | 230 | 75 | 430 |
A.平均数 .中位数 .众数 .平均数与众数
10.一列火车由甲市驶往相距600km的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )
A. . . .
11.下列运算正确的是( )
A. .3﹣=3
C. .
12.如图,已知△ABC中,AB=10 ,AC=8 ,BC = 6 ,DE是AC的垂直平分线,DE交AB于点D ,交AC于点E ,连接CD ,则CD的长度为( )
A.3 .4 .4.8 .5
二、填空题
13.若x=-1, 则x2+2x+1=__________.
14.如图所示,于点,且,,若,则___.
15.在平面直角坐标系中,已知一次函数的图象经过两点.若,则______(填“>”“<”或“=”).
16.将直线y=2x向下平移3个单位长度得到的直线解析式为_____.
17.如图,如果正方形的面积为,正方形的面积为,则的面积_________.
18.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:
| 笔试 | 面试 | 体能 | |
| 甲 | 83 | 79 | 90 |
| 乙 | 85 | 80 | 75 |
| 丙 | 80 | 90 | 73 |
19.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是_____.
20.已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.
三、解答题
21.如图,的对角线相交于点,直线EF过点O分别交BC,AD于点E、F,G、H分别为OB、OD的中点,求证:四边形GEHF是平行四边形.
22.某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.
(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;
(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)
23.如图,,平分,交于点,平分,交于点,连接.求证:四边形是菱形.
24.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
25.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:
(1)乙车的速度是 千米/时,t= 小时;
(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;
(3)直接写出乙车出发多长时间两车相距120千米.
【参】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
【详解】
解:根据直角三角形的面积可以导出:斜边c=.
再结合勾股定理:a2+b2=c2.
进行等量代换,得a2+b2=,
两边同除以a2b2, 得.
故选D.
2.C
解析:C
【解析】
【分析】
【详解】
∵等腰三角形ABC中,AB=AC,AD是BC上的中线,
∴BD=CD=BC=3,
AD同时是BC上的高线,
∴AB==5.
故它的腰长为5.
故选C.
3.B
解析:B
【解析】
【分析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.
【详解】
解:根据题意得:,
解得:x≥-1且x≠1.
故选B.
点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
4.C
解析:C
【解析】
【分析】
利用k、b的值依据函数的性质解答即可.
【详解】
解:当x=1时,y=3,故A选项正确,
∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,
∴B、D正确,
∵y>0,
∴2x+1>0,
∴x>﹣,
∴C选项错误,
故选:C.
【点睛】
此题考查一次函数的性质,熟记性质并运用解题是关键.
5.D
解析:D
【解析】
【分析】
方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
【详解】
由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.
故选D.
6.D
解析:D
【解析】
【分析】
已知ab=8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.
【详解】
故选D.
【点睛】
本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.
7.D
解析:D
【解析】
【分析】
【详解】
∵边长为1的正方形对角线长为:,
∴OA=
∵A在数轴上原点的左侧,
∴点A表示的数为负数,即.
故选D
8.B
解析:B
【解析】
【分析】
由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=OA•PE+OD•PF,代入数值即可求得结果.
【详解】
连接OP,如图所示:
∵四边形ABCD是矩形,
∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,
S△AOD=S矩形ABCD,
∴OA=OD=AC,
∵AB=15,BC=20,
∴AC===25,S△AOD=S矩形ABCD=×15×20=75,
∴OA=OD=,
∴S△AOD=S△APO+S△DPO=OA•PE+OD•PF=OA•(PE+PF)=×(PE+PF)=75,
∴PE+PF=12.
∴点P到矩形的两条对角线AC和BD的距离之和是12.
故选B.
【点睛】
本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.
9.C
解析:C
【解析】
试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.
故选C.
考点:统计量的选择.
10.A
解析:A
【解析】
【分析】
首先写出函数的解析式,根据函数的特点即可确定.
【详解】
由题意得:s与t的函数关系式为s=600-200t,其中0≤t≤3,
所以函数图象是A.
故选A.
【点睛】
本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.
11.C
解析:C
【解析】
【分析】
根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.
【详解】
A.与不是同类二次根式,不能合并,故该选项计算错误,
B.=2,故该选项计算错误,
C.==,故该选项计算正确,
D.==,故该选项计算错误.
故选:C.
【点睛】
本题考查二次根式得运算,熟练掌握运算法则是解题关键.
12.D
解析:D
【解析】
【分析】
【详解】
已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC 的中位线,即可得DE==3,再根据勾股定理求出CD=5,故答案选D.
考点:勾股定理及逆定理;中位线定理;中垂线的性质.
二、填空题
13.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式
解析:2
【解析】
【分析】
先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.
【详解】
∵x=-1,
∴x2+2x+1=(x+1)2=(-1+1)2=2,
故答案为:2.
【点睛】
本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.
14.27°【解析】【分析】连接AE先证Rt△ABD≌Rt△CBD得出四边形ABCE是菱形根据菱形的性质可推导得到∠E的大小【详解】如下图连接AE∵BE⊥AC∴∠ADB=∠BDC=90°∴△ABD和△CB
解析:27°
【解析】
【分析】
连接AE,先证Rt△ABD≌Rt△CBD,得出四边形ABCE是菱形,根据菱形的性质可推导得到∠E的大小.
【详解】
如下图,连接AE
∵BE⊥AC,∴∠ADB=∠BDC=90°
∴△ABD和△CBD是直角三角形
在Rt△ABD和Rt△CBD中
∴Rt△ABD≌Rt△CBD
∴AD=DC
∵BD=DE
∴在四边形ABCE中,对角线垂直且平分
∴四边形ABCE是菱形
∵∠ABC=54°
∴∠ABD=∠CED=27°
故答案为:27°
【点睛】
本题考查菱形的证明和性质的运用,解题关键是先连接AE,然后利用证Rt△ABD≌Rt△CBD推导菱形.
15.大于【解析】【分析】根据一次函数的性质当k<0时y随x的增大而减小【详解】∵一次函数y=−2x+1中k=−2<0∴y随x的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的
解析:大于
【解析】
【分析】
根据一次函数的性质,当k<0时,y随x的增大而减小.
【详解】
∵一次函数y=−2x+1中k=−2<0,
∴y随x的增大而减小,
∵x1<x2,
∴y1>y2.
故答案为>.
【点睛】
此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
16.【解析】【分析】根据直线的平移规律上加下减左加右减求解即可【详解】解:直线y 2x向下平移3个单位长度得到的直线解析式为【点睛】本题考查了直线的平移变换直线平移变换的规律是:对直线y=kx+b而言:
解析:.
【解析】
【分析】
根据直线的平移规律“上加下减,左加右减”求解即可.
【详解】
解:直线y=2x向下平移3个单位长度得到的直线解析式为.
【点睛】
本题考查了直线的平移变换. 直线平移变换的规律是:对直线y=kx+b而言:上下移动,上加下减;左右移动,左加右减.例如,直线y=kx+b如上移3个单位,得y=kx+b+3;如下移3个单位,得y=kx+b-3;如左移3个单位,得y=k(x+3)+b;如右移3个单位,得y=k(x-3)+b.掌握其中变与不变的规律是解决直线平移变换问题的基本方法.
17.【解析】【分析】根据正方形的面积分别求出BCBE的长继而可得CE的长再利用三角形面积公式进行求解即可【详解】∵正方形的面积为正方形的面积为∴BC=AB=BE=∴CE=BE-BC=-∴S△ACE==故
解析:
【解析】
【分析】
根据正方形的面积分别求出BC、BE的长,继而可得CE的长,再利用三角形面积公式进行求解即可.
【详解】
∵正方形的面积为,正方形的面积为,
∴BC=AB=,BE=,
∴CE=BE-BC=-,
∴S△ACE==,
故答案为:.
【点睛】
本题考查了算术平方根的应用,三角形面积,二次根式的混合运算等,熟练掌握并灵活运用相关知识是解题的关键.
18.乙【解析】【分析】由于甲的面试成绩低于80分根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩比较得出结果【详解】解:∵该公司规定:笔试面试体能得分分别不得低于80分80分70分∴甲淘汰;乙
解析:乙
【解析】
【分析】
由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.
【详解】
解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,
∴甲淘汰;
乙成绩=85×60%+80×30%+75×10%=82.5,
丙成绩=80×60%+90×30%+73×10%=82.3,
乙将被录取.
故答案为:乙.
【点睛】
本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.
19.x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大当x<﹣2时y<0即可求出答案【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣20)∴y随x的增大而增大当x<﹣2时y<0即
解析:x<﹣2
【解析】
【分析】
根据一次函数的性质得出y随x的增大而增大,当x<﹣2时,y<0,即可求出答案.
【详解】
解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),
∴y随x的增大而增大,
当x<﹣2时,y<0,
即kx+b<0.
故答案为:x<﹣2.
【点睛】
本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.
20.8cm【解析】【分析】先由勾股定理求出斜边的长再用面积法求解【详解】解:如图在Rt△ABC中∠ACB=90°AC=6cmBC=8cmCD⊥AB则(cm)由得解得CD=48(cm)故答案为48cm【点
解析:8cm
【解析】
【分析】
先由勾股定理求出斜边的长,再用面积法求解.
【详解】
解:如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CD⊥AB,
则(cm),
由,
得,解得CD=4.8(cm).
故答案为4.8cm.
【点睛】
本题考查了勾股定理和用直角三角形的面积求斜边上的高的知识,属于基础题型.
三、解答题
21.见解析.
【解析】
【分析】
通过证明△EOB≌△FOD得出EO=FO,结合G、H分别为OB、OD的中点,可利用对角线互相平分的四边形是平行四边形进行证明.
【详解】
证明:∵四边形ABCD为平行四边形,
∴BO=DO,AD=BC且AD∥BC.
∴∠ADO=∠CBO.
又∵∠EOB=∠FOD,
∴△EOB≌△FOD(ASA).
∴EO=FO.
又∵G、H分别为OB、OD的中点,
∴GO=HO.
∴四边形GEHF为平行四边形.
【点睛】
本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
22.(1)当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;(2)第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.
【解析】
【分析】
(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;
(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.
【详解】
解:(1)由图①可得,
当0≤t≤30时,可设日销售量w=kt,
∵点(30,60)在图象上,
∴60=30k.
∴k=2,即w=2t;
当30<t≤40时,可设日销售量w=k1t+b.
∵点(30,60)和(40,0)在图象上,
∴,
解得,k1=﹣6,b=240,
∴w=﹣6t+240.
综上所述,日销售量w=;
即当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;
(2)由图①知,当t=30(天)时,日销售量w达到最大,最大值w=60,
又由图②知,当t=30(天)时,产品A的日销售利润y达到最大,最大值y=60(元/件),
∴当t=30(天)时,日销售量利润Q最大,最大日销售利润Q=60×60=3600(元),
答:第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
23.详见解析
【解析】
【分析】
由角平分线和平行线的性质先证出,,从而有,得到四边形是平行四边形,又因为,所以四边形是菱形.
【详解】
证明:∵平分,
∴,
∵,
∴,
∴,
∴,
同理.
∴,
∵,
∴且,
∴四边形是平行四边形,
∵,
∴四边形是菱形.
【点睛】
本题考查了菱形,熟练掌握菱形的判定方法是解题的关键.
24.(1)见解析;(2)见解析
【解析】
【分析】
(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形.
(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.
【详解】
解:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.
又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.
∴四边形BCFE是平行四边形.
又∵BE=FE,∴四边形BCFE是菱形.
(2)∵∠BCF=120°,∴∠EBC=60°.
∴△EBC是等边三角形.
∴菱形的边长为4,高为.
∴菱形的面积为4×=.
25.(1)60,3;(2)y=120t(0≤t≤3);y=120(3<t≤4);y=-120t+840(4<t≤7);(3)小时或4小时或6小时.
【解析】
【分析】
(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t的值是多少即可.
(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围即可.
(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C地时;③两车都朝A地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.
【详解】
解:(1)根据图示,可得
乙车的速度是60千米/时,
甲车的速度=720÷6=120(千米/小时)
∴t=360÷120=3(小时).
故答案为:60;3;
(2)①当0≤x≤3时,设y=k1x,
把(3,360)代入,可得
3k1=360,
解得k1=120,
∴y=120x(0≤x≤3).
②当3<x≤4时,y=360.
③4<x≤7时,设y=k2x+b,
把(4,360)和(7,0)代入,可得,解得
∴y=﹣120x+840(4<x≤7).
(3)①÷+1=300÷180+1=+1=(小时)
②当甲车停留在C地时,
÷60
=240÷6
=4(小时)
③两车都朝A地行驶时,
设乙车出发x小时后两车相距120千米,
则60x﹣[120(x﹣1)﹣360]=120,
所以480﹣60x=120,
所以60x=360,
解得x=6.
综上,可得乙车出发小时、4小时、6小时后两车相距120千米.
【点睛】
本题考查一次函数的应用.
