
一、选择题
1.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
【答案】D
【解析】
【分析】
【详解】
试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且= .∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).
方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).
∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).
故答案选D.
考点:位似变换.
2.若△ABC∽△DEF,△ABC与△DEF的相似比为2︰3,则S△ABC︰S△DEF为
A.2∶3 .4∶9 .∶ .3∶2
【答案】B
【解析】
【分析】
根据两相似三角形的面积比等于相似比的平方,所以.
【详解】
因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,
所以S△ABC:S△DEF=()2=,故选B.
【点睛】
本题考查了相似三角形的性质,解题的关键是掌握:两个相似三角形面积比等于相似比的平方.
3.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )
A.3:4 .9:16 .9:1 .3:1
【答案】B
【解析】
【分析】
可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
【详解】
∵四边形ABCD为平行四边形,
∴DC∥AB,
∴△DFE∽△BFA,
∵DE:EC=3:1,
∴DE:DC=3:4,
∴DE:AB=3:4,
∴S△DFE:S△BFA=9:16.
故选B.
4.如图,在△ABC中,∠A=75°,AB=6,AC=8,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A. . . .
【答案】D
【解析】
【分析】
根据相似三角形的判定定理对各选项进行逐一判定即可.
【详解】
A、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.
D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;
故选:D.
【点睛】
本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.
5.如图所示,在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F.若CF=x,tanA=y,则x与y之间满足( )
A. . . .
【答案】A
【解析】
【分析】
由直角三角形斜边上的中线性质得出CD=AB=AD=4,由等腰三角形的性质得出∠A=∠ACD,得出tan∠ACD==tanA=y,证明△CEG∽△FEC,得出,得出y=,求出y2=,得出=FE2,再由勾股定理得出FE2=CF2﹣CE2=x2﹣4,即可得出答案.
【详解】
解:如图所示:
∵在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,
∴CD=AB=AD=4,
∴∠A=∠ACD,
∵EF垂直平分CD,
∴CE=CD=2,∠CEF=∠CEG=90°,
∴tan∠ACD==tanA=y,
∵∠ACD+∠FCE=∠CFE+∠FCE=90°,
∴∠ACD=∠FCE,
∴△CEG∽△FEC,
∴=,
∴y=,
∴y2=,
∴=FE2,
∵FE2=CF2﹣CE2=x2﹣4,
∴=x2﹣4,
∴+4=x2,
故选:A.
【点睛】
本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.
6.如图,点E是的边上一点,,连接,交边于点,下列结论中错误的是( )
A. . . .
【答案】D
【解析】
【分析】
由平行四边形的性质和相似三角形的性质分别判断即可.
【详解】
解:∵在中,,,
∴,
∴,
∵
∴,选项A正确,选项D错误,
∴,即:,
∴,
∴选项B正确,
∴,即:,
∴选项C正确,
故选:D.
【点睛】
此题主要考查了平行四边形的性质以及相似三角形的判定与性质,能熟练利用相似三角形对应边成比例是解题关键.
7.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是( )
A.2 .3 .4 .5
【答案】B
【解析】
【分析】
作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.
【详解】
解:作BD⊥x轴于D,B′E⊥x轴于E,
则BD∥B′E,
由题意得CD=2,B′C=2BC,
∵BD∥B′E,
∴△BDC∽△B′EC,
∴,
∴CE=4,则OE=CE−OC=3,
∴点B'的横坐标是3,
故选:B.
【点睛】
本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.
8.如图,小明同学用自制的直角三角形纸板测量树的高度,他调整自己的位置,设法使斜边保持水平,并且边与点在同一直线上.已知纸板的两条直角边,,测得边离地面的高度,,则树高是( )
A.4米 .4.5米 .5米 .5.5米
【答案】D
【解析】
【分析】
利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.
【详解】
解:∵∠DEF=∠BCD-90° ∠D=∠D
∴△ADEF∽△DCB
∴
∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m
∴解得:BC=4
∴AB=AC+BC=1.5+4=5.5米
故答案为:5.5.
【点睛】
本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。
9.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则DF的长为( )
A. . . .
【答案】D
【解析】
【分析】
先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.
【详解】
如图,
在Rt△BDC中,BC=4,∠DBC=30°,
∴BD=2,
连接DE,
∵∠BDC=90°,点D是BC中点,
∴DE=BE=CE=BC=2,
∵∠DCB=30°,
∴∠BDE=∠DBC=30°,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠BDE,
∴DE∥AB,
∴△DEF∽△BAF,
∴,
在Rt△ABD中,∠ABD=30°,BD=2,
∴AB=3,
∴,
∴,
∴DF=,
故选D.
【点睛】
此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE∥是解本题的关键.
10.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为( )
A.1:3 .1:8 .1:9 .1:4
【答案】C
【解析】
【分析】
根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.
【详解】
∵S△EFC=3S△DEF,
∴DF:FC=1:3 (两个三角形等高,面积之比就是底边之比),
∵DE∥BC,
∴△DEF∽△CBF,
∴DE:BC=DF:FC=1:3
同理△ADE∽△ABC,
∴S△ADE:S△ABC=1:9,
故选:C.
【点睛】
本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.
11.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH长为( )
A.1 .1.2 .2 .2.5
【答案】B
【解析】
【分析】
由AB∥GH∥CD可得:△CGH∽△CAB、△BGH∽△BDC,进而得:、,然后两式相加即可.
【详解】
解:∵AB∥GH,∴△CGH∽△CAB,∴,即①,
∵CD∥GH,∴△BGH∽△BDC,∴,即②,
①+②,得:,解得:.
故选:B.
【点睛】
本题考查了相似三角形的判定和性质,属于基本题型,熟练掌握相似三角形的判定和性质是解题的关键.
12.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是( )
A. .
C. .
【答案】B
【解析】
【分析】
根据相似三角形的判定方法一一判断即可.
【详解】
解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
故选:B.
【点睛】
本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
13.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则较大多边形的周长为 )
A.48 cm .54 cm .56 cm . cm
【答案】A
【解析】
试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.
解:两个相似多边形的面积比是9:16,
面积比是周长比的平方,
则大多边形与小多边形的相似比是4:3.
相似多边形周长的比等于相似比,
因而设大多边形的周长为x,
则有=,
解得:x=48.
大多边形的周长为48cm.
故选A.
考点:相似多边形的性质.
14.要做甲、乙两个形状相同(相似)的三角形框架,已知甲三角形框架三边的长分别为50 cm、60 cm、80 cm,乙三角形框架的一边长为20 cm,则符合条件的乙三角形框架共有( ).
A.1种 .2种 .3种 .4种
【答案】C
【解析】
试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.
故选:C.
点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.
15.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是( )
A.①③④ .①②④ .②③④ .①②③④
【答案】B
【解析】
【分析】
将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.
【详解】
解:∵将△ABC绕点A顺时针旋转得到△AB1C1,
∴△ABC≌△AB1C1,
∴AC1=AC,
∴△AC1C为等腰三角形;故①正确;
∴AC1=AC,
∴∠C1=∠ACC1=30°,
∴∠C1AC=120°,
∴∠B1AB=120°,
∵AB1=AB,
∴∠AB1B=30°=∠ACB,
∵∠ADB1=∠BDC,
∴△AB1D∽△BCD;故②正确;
∵旋转角为α,
∴α=120°,故③错误;
∵∠C1AB1=∠BAC=45°,
∴∠B1AC=75°,
∵∠AB1C1=∠BAC=105°,
∴∠AB1C=75°,
∴∠B1AC=∠AB1C,
∴CA=CB1;故④正确.
故选:B.
【点睛】
本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.
16.如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN=;③BP=4PK;④PM•PA=3PD2,其中正确的是( )
A.①②③ .①②④ .①③④ .②③④
【答案】B
【解析】
【分析】
根据菱形的性质得到AD∥BC,根据平行线的性质得到对应角相等,根据全等三角形的判定定理△ADP≌△ECP,由相似三角形的性质得到AD=CE,作PI∥CE交DE于I,根据点P是CD的中点证明CE=2PI,BE=4PI,根据相似三角形的性质得到,得到BP=3PK,故③错误;作OG⊥AE于G,根据平行线等分线段定理得到MG=NG,又OG⊥MN,证明△MON是等腰三角形,故①正确;根据直角三角形的性质和锐角三角函数求出∠OMN=,故②正确;然后根据射影定理和三角函数即可得到PM•PA=3PD2,故④正确.
【详解】
解:作PI∥CE交DE于I,
∵四边形ABCD为菱形,
∴AD∥BC,
∴∠DAP=∠CEP,∠ADP=∠ECP,
在△ADP和△ECP中,
,
∴△ADP≌△ECP,
∴AD=CE,
则,又点P是CD的中点,
∴,
∵AD=CE,
∴,
∴BP=3PK,
故③错误;
作OG⊥AE于G,
∵BM丄AE于M,KN丄AE于N,
∴BM∥OG∥KN,
∵点O是线段BK的中点,
∴MG=NG,又OG⊥MN,
∴OM=ON,
即△MON是等腰三角形,故①正确;
由题意得,△BPC,△AMB,△ABP为直角三角形,
设BC=2,则CP=1,由勾股定理得,BP=,
则AP=,
根据三角形面积公式,BM=,
∵点O是线段BK的中点,
∴PB=3PO,
∴OG=BM=,
MG=MP=,
tan∠OMN=,故②正确;
∵∠ABP=90°,BM⊥AP,
∴PB2=PM•PA,
∵∠BCD=60°,
∴∠ABC=120°,
∴∠PBC=30°,
∴∠BPC=90°,
∴PB=PC,
∵PD=PC,
∴PB2=3PD,
∴PM•PA=3PD2,故④正确.
故选B.
【点睛】
本题考查相似形综合题.
17.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )
A.(2,1) .(2,0) .(3,3) .(3,1)
【答案】A
【解析】
【分析】
根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.
【详解】
由题意得,△ODC∽△OBA,相似比是,
∴,
又OB=6,AB=3,
∴OD=2,CD=1,
∴点C的坐标为:(2,1),
故选A.
【点睛】
本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.
18.如图,顶角为的等腰三角形,其底边与腰之比等k,这样的三角形称为黄金三角形,已知腰AB=1,为第一个黄金三角形,为第二个黄金三角形,为第三个黄金三角形以此类推,第2020个黄金三角形的周长()
A. . . .
【答案】D
【解析】
【分析】
根据相似三角形对应角相等,对应边成比例,求出前几个三角形的周长,进而找出规律:第n个黄金三角形的周长为kn-1(2+k),从而得出答案.
【详解】
解:∵AB=AC=1,
∴△ABC的周长为2+k;
△BCD的周长为k+k+k2=k(2+k);
△CDE的周长为k2+k2+k3=k2(2+k);
依此类推,第2020个黄金三角形的周长为k2019(2+k).
故选:D.
【点睛】
此题考查黄金分割,相似三角形的性质,找出各个三角形周长之间的关系,得出规律是解题的关键.
19.如图,已知一组平行线,被直线、所截,交点分别为、、和、、,且,,,则( )
A.4.4 .4 .3.4 .2.4
【答案】D
【解析】
【分析】
根据平行线等分线段定理列出比例式,然后代入求解即可.
【详解】
解:∵
∴ 即
解得:EF=2.4
故答案为D.
【点睛】
本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.
20.如图,在平行四边形ABCD中,E,F分别是边AD,BC的中点,AC分别交BE,DF于G,H,试判断下列结论:①△ABE≌△CDF;②AG=GH=HC;③2EG=BG;④S△ABG:S四边形GHDE=2:3,其中正确的结论是( )
A.1个 .2个 .3个 .4个
【答案】D
【解析】
【分析】
根据SAS,即可证明①△ABE≌△CDF;在平行四边形ABCD中,E,F分别是边AD,BC的中点,根据有一组对边平行且相等四边形是平行四边形,即可证明四边形BFDE是平行四边形,由AD∥BC,即可证明△AGE∽△CGB,△CHF∽△AHD,然后根据相似三角形的对应边成比例,证得AG∶CG=EG∶BG=1∶2,CH∶AH=1∶2,即可证得②AG=GH=HC,③2EG=BG;由S△ABG=2S△AEG,S四边形GHDE=3S△AEG,可得结论④S△ABG:S四边形GHDE=2:3.
【详解】
解:在平行四边形ABCD中,
AB=CD,∠BAE=∠DCF,BC=DA,
∵E,F分别是边AD,BC的中点,
∴AE=CF,
∴△ABE≌△CDF,故①正确;
∵AD∥BC,
∴△AGE∽△CGB,△CHF∽△AHD,
∴AG∶CG=EG∶BG=AE∶CB,CH∶AH=CF∶AD,
∵E,F分别是边AD,BC的中点,
∴AE=AD,CF=BC,
∴AE∶CB=1∶2,CF∶AD=1∶2,
∴EG∶BG=AG∶CG=1∶2,CH∶AH=1∶2
∴AG=CH=AC,2EG=BG,故③正确;
∴AG=GH=HC,故②正确;
∵S△ABG=2S△AEG,S四边形GHDE=3S△AEG,
∴S△ABG:S四边形GHDE=2:3,故④正确,
故选:D
【点睛】
本题主要考查全等三角形的判定与性质、相似三角形的判定与性质、平行四边形的判定与性质,熟练掌握这些知识是解本题的关键.
