最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

新课标高一物理全套练习题必修一高中物理力学典型例题

来源:动视网 责编:小OO 时间:2025-09-24 10:44:30
文档

新课标高一物理全套练习题必修一高中物理力学典型例题

高中物理力学典型例题1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重为12牛的物体。平衡时,绳中张力T=____分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。所以,本题有多种解法。解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,
推荐度:
导读高中物理力学典型例题1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重为12牛的物体。平衡时,绳中张力T=____分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。所以,本题有多种解法。解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,
高中物理力学典型例题

1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距

为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重

为12牛的物体。平衡时,绳中张力T=____

分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画

力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方

法,如正交分解法、相似三角形等。所以,本题有多种解法。

解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角

为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图

中几何条件得:Sinα=3/5,则代入上式可得T=10牛。

解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)

的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形

为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则:得:

牛。

想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化?

(提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。)

2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、

B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相

等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块,

使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持

C、D两端的拉力F不变。

(1)当物块下落距离h为多大时,物块的加速度为零?

(2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少?

(3)求物块下落过程中的最大速度Vm和最大距离H?

分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角

逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两

绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力

逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度减为零时,物块竖直下落的距离达到最大值H。

当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。

对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。

(1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知:

h=L*tg30°= L [1]

(2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2]

克服C端恒力F做的功为:W=F*h’[3]

由[1]、[2]、[3]式联立解得:W=(-1)mgL

(3)出物块下落过程中,共有三个力对物块做功。重力做正功,两端绳子对物块的拉力做负功。两端绳子拉力做的功就等于作用在C、D端的恒力F所做的功。因为物块下降距离h时动能最大。由动能定理得:

mgh-2W=[4]将[1]、[2]、[3]式代入[4]式解得:Vm=

当物块速度减小为零时,物块下落距离达到最大值H,绳C、D上升的距离为H’。由动能定理得:mgH-2mgH’=0,又H’=-L,联立解得:H=。

3、如图3-1所示的传送皮带,其水平部分ab=2米,bc=4米,bc与水平

面的夹角α=37°,一小物体A与传送皮带的滑动摩擦系数μ=0.25,皮

带沿图示方向运动,速率为2米/秒。若把物体A轻轻放到a点处,它将

被皮带送到c点,且物体A一直没有脱离皮带。求物体A从a点被传送

到c点所用的时间。

分析与解:物体A轻放到a点处,它对传送带的相对运动向后,传送带对A的滑动摩擦力向前,则A 作初速为零的匀加速运动直到与传送带速度相同。设此段时间为t1,则:

a1=μg=0.25x10=2.5米/秒2t=v/a1=2/2.5=0.8秒

设A匀加速运动时间内位移为S1,则:

设物体A在水平传送带上作匀速运动时间为t2,则

设物体A在bc段运动时间为t3,加速度为α2,则:

α2=g*Sin37°-μgCos37°=10x0.6-0.25x10x0.8=4米/秒2

解得:t3=1秒(t3=-2秒舍去)

所以物体A从a点被传送到c点所用的时间t=t1+t2+t3=0.8+0.6+1=2.4秒。

4、如图4-1所示,传送带与地面倾角θ=37°,AB长为16米,传送带以10米/秒的速度匀速运动。在传送带上端A无初速地释放一个质量为0.5千克的物体,它与传送带之间的动摩擦系数为μ=0.5,

求:(1)物体从A运动到B所需时间,(2)物体从A 运动到B 的过程中,摩擦力对物体所做的功

(g=10米/秒2)

分析与解:(1)当物体下滑速度小于传送带时,物体的加速度为α1,(此时滑动摩擦力沿斜面向下)则:

t1=v/α1=10/10=1米

当物体下滑速度大于传送带V=10米/秒时,物体的加速度为α2(此时f沿斜面向上)则:

即:10t2+t22=11 解得:t2=1秒(t2=-11秒舍去)

所以,t=t1+t2=1+1=2秒

(2)W1=fs1=μmgcosθS1=0.5X0.5X10X0.8X5=10焦

W2=-fs2=-μmgcosθS2=-0.5X0.5X10X0.8X11=-22焦

所以,W=W1+W2=10-22=-12焦。

想一想:如图4-1所示,传送带不动时,物体由皮带顶端A从静止开始下滑到皮带底端B用的时间为t,则:(请选择)

A.当皮带向上运动时,物块由A滑到B的时间一定大于t。

B.当皮带向上运动时,物块由A滑到B的时间一定等于t。

C.当皮带向下运动时,物块由A滑到B的时间可能等于t。

D.当皮带向下运动时,物块由A滑到B的时间可能小于t。(B、C、D)

5、如图5-1所示,长L=75cm的静止直筒中有一不计大小的小球,筒与球的总质量为4千

克,现对筒施加一竖直向下、大小为21牛的恒力,使筒竖直向下运动,经t=0.5秒时间,小球恰好跃出筒口。求:小球的质量。(取g=10m/s2)

分析与解:筒受到竖直向下的力作用后做竖直向下的匀加速运动,且加速度大于重力加

速度。而小球则是在筒内做自由落体运动。小球跃出筒口时,筒的位移比小球的位移多

一个筒的长度。

设筒与小球的总质量为M,小球的质量为m,筒在重力及恒力的共同作用下竖直向下

做初速为零的匀加速运动,设加速度为a;小球做自由落体运动。设在时间t内,筒与小

球的位移分别为h1、h2(球可视为质点)如图5-2所示。

由运动学公式得:

又有:L=h1-h2代入数据解得:a=16米/秒2

又因为筒受到重力(M-m)g和向下作用力F,据牛顿第二定律:

F+(M-m)g=(M-m)a 得:

6、如图6-1所示,A、B两物体的质量分别是m1和m2,其接触面光滑,与

水平面的夹角为θ,若A、B与水平地面的动摩擦系数都是μ,用水平力F推

A,使A、B一起加速运动,求:(1)A、B间的相互作用力(2)为维持A、B间不发生相对滑动,力F的取值范围。

分析与解:A在F的作用下,有沿A、B间斜面向上运动的趋势,据

题意,为维持A、B间不发生相对滑动时,A处刚脱离水平面,即A

不受到水平面的支持力,此时A与水平面间的摩擦力为零。

本题在求A、B间相互作用力N和B受到的摩擦力f2时,运用隔离法;而求A、B组成的系统的加速度时,运用整体法。

(1)对A受力分析如图6-2(a)所示,据题意有:N1=0,f1=0

因此有:Ncosθ=m1g [1] , F-Nsinθ=m1a [2]

由[1]式得A、B间相互作用力为:N=m1g/cosθ

(2)对B受力分析如图6-2(b)所示,则:N2=m2g+Ncosθ[3] , f2=μN2[4]

将[1]、[3]代入[4]式得:f2=μ(m1+ m2)g

取A、B组成的系统,有:F-f2=(m1+ m2)a [5]

由[1]、[2]、[5]式解得:F=m1g(m1+ m2)(tgθ-μ)/m2

故A、B不发生相对滑动时F的取值范围为:0<F≤m1g(m1+ m2)(tgθ-μ)/m2

想一想:当A、B与水平地面间光滑时,且又m1=m2=m时,则F的取值范围是多少?( 0<F≤2mgtgθ=。

7、某人造地球卫星的高度是地球半径的15倍。试估算此卫星的线速度。已知地球半径R=00km,g=10m/s2。

分析与解:人造地球卫星绕地球做圆周运动的向心力由地球对卫星的引力提供,设地球与卫星的质量分别为M、m,则:=[1]

又根据近地卫星受到的引力可近似地认为等于其重力,即:mg=[2]

[1]、[2]两式消去GM解得:V===2.0X103 m/s

说明:n越大(即卫星越高),卫星的线速度越小。若n=0,即近地卫星,则卫星的线速度为V0=

=7.9X103m/s,这就是第一宇宙速度,即环绕速度。

8、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的内径大得多。在圆管中有两个直径与细管内径相同的小球(可视为质点)。A球的质量为m1,B球的质量为m2。

它们沿环形圆管顺时针运动,经过最低点时的速度都为V0。设A球运动到最低点时,

B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与V0

应满足的关系式是。

分析与解:如图7-1所示,A球运动到最低点时速度为V0,A球受到向下重力mg和细

管向上弹力N1的作用,其合力提供向心力。那么,N1-m1g=m1[1]

这时B球位于最高点,速度为V1,B球受向下重力m2g和细管弹力N2作用。球作用于细管的力是N1、N2的反作用力,要求两球作用于细管的合力为零,即要求N2与N1等值反向,N1=N2 [2],且N2方向一定

向下,对B球:N2+m2g=m2[3]

B球由最高点运动到最低点时速度为V0,此过程中机械能守恒:

即m2V12+m2g2R=m2V02 [4]

由[1][2][3][4]式消去N1、N2和V1后得到m1、m2、R与V0满足的关系式是:

(m1-m2)+(m1+5m2)g=0 [5]

说明:(1)本题不要求出某一物理量,而是要求根据对两球运动的分析和受力的分析,在建立[1]-[4]式的基础上得到m1、m2、R与V0所满足的关系式[5]。(2)由题意要求两球对圆管的合力为零知,N2一定与N1方向相反,这一点是列出[3]式的关键。且由[5]式知两球质量关系m1<m2。

9、如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A点由静止开始向B点运动,到达B点时外力F突然撤去,滑块随即冲上半径为R=0.4米的1/4光滑圆弧面小车,小车立即沿光滑水平面PQ运动。设:开始时平面AB与圆弧CD相切,A、B、C三点在同一水平线上,令AB连线为X轴,且AB=d=0.m,滑块在AB面上运动时,其动量随位移的变化关系为P=1.6kgm/s,小车质量M=3.6kg,不计能量损失。求:(1)滑块受水平推力F为多大? (2)滑块通过C点时,圆弧C点受到压力为多大? (3)滑块到达D点时,小车速度为多大? (4)滑块能否第二次通过C点? 若滑块第二次通过C点时,小车与滑块的速度分别为多大? (5)滑块从D点滑出再返回D点这一过程中,小车移动距离为多少? (g取10m/s2)

分析与解:(1)由P=1.6=mv,代入x=0.m,可得滑块到B点速度为:

V B=1.6/m=1.6=3.2m/s

A→B,由动能定理得:FS=mVB2

所以F=mVB2/(2S)=0.4X3.22/(2X0.)=3.2N

(2)滑块滑上C立即做圆周运动,由牛顿第二定律得:

N-mg=mVC2/R 而VC=VB 则N=mg+mVC2/R=0.4X10+0.4X3.22/0.4=14.2N

(3)滑块由C→D的过程中,滑块和小车组成系统在水平方向动量守恒,由于滑块始终紧贴着小车一起运动,在D点时,滑块和小车具有相同的水平速度V DX。由动量守恒定律得:mV C=(M+m)V DX 所以V DX=mV C/(M+m)=0.4X3.2/(3.6+0.4)=0.32m/s

(4)滑块一定能再次通过C点。因为滑块到达D点时,除与小车有相同的水平速度V DX外,还具有竖直向上的分速度V DY,因此滑块以后将脱离小车相对于小车做竖直上抛运动(相对地面做斜上抛运动)。因题中说明量损失,可知滑块在离车后一段时间内,始终处于D点的正上方(因两者在水平方向不受力作用,水平方向分运动为匀速运动,具有相同水平速度),所以滑块返回时必重新落在小车的D点上,然后再圆孤下滑,最后由C点离开小车,做平抛运动落到地面上。由机械能守恒定律得:

mV C2=mgR+(M+m)V DX2+mV DY2

所以

以滑块、小车为系统,以滑块滑上C点为初态,滑块第二次滑到C点时为末态,此过程中系统水平方向动量守恒,系统机械能守恒(注意:对滑块来说,此过程中弹力与速度不垂直,弹力做功,机械能不守恒)得:

mV C=mV C'+MV 即mV C2=mV C'2+MV2

上式中VC'、V分别为滑块返回C点时,滑块与小车的速度,

V=2mV C/(M+m)=2X0.4X3.2/(3.6+0.4)=0.m/s

V C'=(m-M)V C/(m+M)=(0.4-3.6)X3.2/(0.4+3.6)=-2.56m/s(与V反向)

(5)滑块离D到返回D这一过程中,小车做匀速直线运动,前进距离为:

△S=V DX2V DY/g=0.32X2X1.1/10=0.07m

10、如图9-1所示,质量为M=3kg的木板静止在光滑水平面上,板的右端放

一质量为m=1kg的小铁块,现给铁块一个水平向左速度V0=4m/s,铁块在木

板上滑行,与固定在木板左端的水平轻弹簧相碰后又返回,且恰好停在木板右端,求铁块与弹簧相碰过程中,弹性势能的最大值E P。

分析与解:在铁块运动的整个过程中,系统的动量守恒,因此弹簧压缩最大时和铁块停在木板右端时系统的共同速度(铁块与木板的速度相同)可用动量守恒定律求出。在铁块相对于木板往返运动过程中,系统总机械能损失等于摩擦力和相对运动距离的乘积,可利用能量关系分别对两过程列方程解出结果。

设弹簧压缩量最大时和铁块停在木板右端时系统速度分别为V和V',由动量守恒得:mV0=(M+m)V=(M+m)V' 所以,V=V’=mV0/(M+m)=1X4/(3+1)=1m/s

铁块刚在木板上运动时系统总动能为:EK=mV02=0.5X1X16=8J弹簧压缩量最大时和铁块最后停在木板右端时,系统总动能都为:

E K'=(M+m)V2=0.5X(3+1)X1=2J

铁块在相对于木板往返运过程中,克服摩擦力f所做的功为:

W f=f2L=E K-E K'=8-2=6J

铁块由开始运动到弹簧压缩量最大的过程中,系统机械能损失为:fs=3J

由能量关系得出弹性势能最大值为:E P=E K-E K'-fs=8-2-3=3J

说明:由于木板在水平光滑平面上运动,整个系统动量守恒,题中所求的是弹簧的最大弹性势能,解题时必须要用到能量关系。在解本题时要注意两个方面:1.是要知道只有当铁块和木板相对静止时(即速度相同时),弹簧的弹性势能才最大;弹性势能量大时,铁块和木板的速度都不为零;铁块停在木板右端时,系统速度也不为零。

2.是系统机械能损失并不等于铁块克服摩擦力所做的功,而等于铁块克服摩擦力所做的功和摩擦力对木板所做功的差值,故在计算中用摩擦力乘上铁块在木板上相对滑动的距离。

11、如图10-1所示,劲度系数为K的轻质弹簧一端与墙固定,另一端与倾角为θ的斜面体小车连接,小

车置于光滑水平面上。在小车上叠放一个物体,已知小车质量为M,物

体质量为m,小车位于O点时,整个系统处于平衡状态。现将小车从O

点拉到B点,令OB=b,无初速释放后,小车即在水平面B、C间来回

运动,而物体和小车之间始终没有相对运动。求:

(1)小车运动到B点时的加速度大小和物体所受到的摩擦力大小。

(2)b的大小必须满足什么条件,才能使小车和物体一起运动过程中,在某一位置时,物体和小车之间的摩擦力为零。

分析与解:

(1)所求的加速度a和摩擦力f是小车在B点时的瞬时值。取M、m和弹簧组成的系统为研究对象,由牛顿第二定律:kb=(M+m)a 所以a=kb/(M+m)。

取m为研究对象,在沿斜面方向有:f-mgsinθ=macosθ

所以,f=mgsinθ+m cosθ=m(gsinθ+cosθ)

(2)当物体和小车之间的摩擦力的零时,小车的加速度变为a',小车距O点距离为b',取m为研究对象,有:mgsinθ=ma'cosθ

取M、m和弹簧组成的系统为研究对象,有:kb'=(M+m)a'

以上述两式联立解得:b'=(M+m)gtgθ

说明:在求解加速度时用整体法,在分析求解m受到的摩擦力时用隔离法。整体法和隔离法两者交互运用是解题中常用的方法,希读者认真掌握。

12、如图11-1所示,一列横波t时刻的图象用实线表示,又经

△t=0.2s时的图象用虚线表示。已知波长为2m,则以下说法正确

的是:( )

A、若波向右传播,则最大周期是2s。

B、若波向左传播,则最大周期是2s。

C、若波向左传播,则最小波速是9m/s。

D、若波速是19m/s,则传播方向向左。

分析与解:

若向右传播,则传播0.2m的波数为0.2m/2m=0.1,

则,△t=(n+0.1)T (n=0、1、2、3……) 所以T=△t/(n+0.1)=0.2/(n+0.1)

当n=0时,周期有最大值Tmax=2s,所以A正确。

若向左传播,则在0.2s内传播距离为(2-0.2)m=1.8m,传过波数为1.8m/2m=0.9,则,△t=(n+0.9)T (n=0、1、2、3……) 所以T=△t/(n+0.9)=0.2/(n+0.9)

当n=0时,周期有最大值Tmax≈0.22S,所以B错。

又:T=λ/V,所以V=λ/T=λ/[0.2/(n+0.9)]=2(n+0.9)/0.2=10(n+0.9)

当n=0时,波速最小值为Vmin=9m/s,所以C正确。

当n=1时V=19m/s,所以D正确。

故本题应选A、C、D。

说明:解决波动问题要注意:由于波动的周期性(每隔一个周期T或每隔一个波长λ)和波的传播方向的双向性,往往出现多解,故要防止用特解来代替通解造成解答的不完整。

文档

新课标高一物理全套练习题必修一高中物理力学典型例题

高中物理力学典型例题1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重为12牛的物体。平衡时,绳中张力T=____分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。所以,本题有多种解法。解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top