最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

高考数学总复习:高考中选择题的解题方法与技巧

来源:动视网 责编:小OO 时间:2025-09-24 12:57:35
文档

高考数学总复习:高考中选择题的解题方法与技巧

高考数学总复习:高考中选择题的解题方法与技巧【重点知识回顾】高考数学选择题占总分值的.其解答特点是“四选一”,快速、准确、无误地选择好这个“一”是十分重要的.选择题和其它题型相比,解题思路和方法有着一定的区别,产生这种现象的原因在于选择题有着与其它题型明显不同的特点:①立意新颖、构思精巧、迷惑性强、题材内容相关相近,真假难分;②技巧性高、灵活性大、概念性强、题材内容储蓄多变、解法奇特;③知识面广、跨度较大、切入点多、综合性强.正因为这些特点,使得选择题还具有区别与其它题型的考查功能:①能在较大
推荐度:
导读高考数学总复习:高考中选择题的解题方法与技巧【重点知识回顾】高考数学选择题占总分值的.其解答特点是“四选一”,快速、准确、无误地选择好这个“一”是十分重要的.选择题和其它题型相比,解题思路和方法有着一定的区别,产生这种现象的原因在于选择题有着与其它题型明显不同的特点:①立意新颖、构思精巧、迷惑性强、题材内容相关相近,真假难分;②技巧性高、灵活性大、概念性强、题材内容储蓄多变、解法奇特;③知识面广、跨度较大、切入点多、综合性强.正因为这些特点,使得选择题还具有区别与其它题型的考查功能:①能在较大
高考数学总复习:高考中选择题的解题方法与技巧

【重点知识回顾】

   高考数学选择题占总分值的.

   其解答特点是“四选一”,快速、准确、无误地选择好这个“一”是十分重要的.

   选择题和其它题型相比,解题思路和方法有着一定的区别,产生这种现象的原因在于选择题有着与其它题型明显不同的特点:①立意新颖、构思精巧、迷惑性强、题材内容相关相近,真假难分;②技巧性高、灵活性大、概念性强、题材内容储蓄多变、解法奇特;③知识面广、跨度较大、切入点多、综合性强.

   正因为这些特点,使得选择题还具有区别与其它题型的考查功能:①能在较大的知识范围内,实现对基础知识、基本技能和基本思想方法的考查;②能比较确切地考查考生对概念、原理、性质、法则、定理和公式的掌握和理解情况;③在一定程度上,能有效地考查逻辑思维能力,运算能力、空间想象能力及灵活和综合地运用数学知识解决问题的能力.

【典型例题】

  (一)直接法

直接从题目条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择、涉及概念、性质的辨析或运算较简单的题目常用直接法.

例1、关于函数,看下面四个结论:

    ①是奇函数;②当时,恒成立;③的最大值是;④的最小值是.其中正确结论的个数为:

    A.1个         B.2个        C.3个        D.4个

【解析】,

∴为偶函数,结论①错;对于结论②,当时,,

∴,结论②错.

又∵,∴,从而,结论③错.

中,,∴,

等号当且仅当x=0时成立,可知结论④正确.

【题后反思】

 直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解,直接法运用的范围很广,只要运算正确必能得到正确的答案,提高直接法解选择题的能力,准确地把握中档题的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.

(二)排除法

 排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.

例2、直线与圆的图象可能是:

A.             B.              C.            D.

【解析】由圆的方程知圆必过原点,∴排除A、C选项,圆心(a,-b),

由B、D两图知.直线方程可化为,可知应选B.

【题后反思】

  用排除法解选择题的一般规律是:

  (1)对于干扰支易于淘汰的选择题,可采用筛选法,能剔除几个就先剔除几个;

  (2)允许使用题干中的部分条件淘汰选择支;

  (3)如果选择支中存在等效命题,那么根据规定---答案唯一,等效命题应该同时排除;

  (4)如果选择支存在两个相反的,或互不相容的判断,那么其中至少有一个是假的;

  (5)如果选择支之间存在包含关系,必须根据题意才能判定.

   (三)特例法

 特例法也称特值法、特形法.

 就是运用满足题设条件的某些特殊值、特殊关系或特殊图形对选项进行检验或推理,从而得到正确选项的方法,常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.

例3、设函数,若,则的取值范围为:

A.(-1,1)   B.()  C.   D.

【解析】∵,∴不符合题意,∴排除选项A、B、C,故应选D.

例4、已知函数的图像如图所示,则b的取值范围是:

A.      B.  

C.(1,2)     D.

【解析】设函数,

此时.

【题后反思】

这类题目若是脚踏实地地求解,不仅运算量大,而且极易出错,而通过选择特殊点进行运算,既快又准,但要特别注意,所选的特殊值必须满足已知条件.

(四)验证法

又叫代入法,就是将各个选择项逐一代入题设进行检验,从而获得正确的判断,即将各个选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案.

例5、在下列四个函数中,满足性质:“对于区间(1,2)上的任意,恒成立”的只有:

A.       B.        C.       D.

【解析】当时, ,所以恒成立,故选A.

例6、若圆上恰有相异两点到直线的距离等于1,则r的取值范围是:

A.[4,6]       B.       C.        D.

【解析】圆心到直线的距离为5,则当时,圆上只有一个点到直线的距离为1,当时,圆上有三个点到直线的距离等于1,故应选D.

【题后反思】

代入验证法适用于题设复杂、结论简单的选择题,这里选择把选项代入验证,若第一个恰好满足题意就没有必要继续验证了,大大提高了解题速度.

(五)数形结合法

“数缺形时少直观,形少数时难入微”,对于一些具体几何背景的数学题,如能构造出与之相应的图形进行分析,则能在数形结合,以形助数中获得形象直观的解法.

例7、若函数满足,且时,,则函数的图像与函数的图像的交点个数为:

A.2     B.3    C.4     D.无数个

【解析】由已知条件可做出函数及

的图像,如下图,由图像可得其交点的个数为4个,

故应选C.

例8、设函数,若若,则的取值范围为:

A.(-1,1)   B.  

C.()   D.

【解析】在同一直角坐标系中,做出函数

和直线x=1的图像,它们相交于(-1,1)和

(1,1)两点,则,得,故选D.

【题后反思】

严格地说,图解法并非属于选择题解题思路范畴,而是一种数形结合的解题策略,但它在解有关选择题时非常简便有效,不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图像反会导致错误的选择.

(六)逻辑分析法

 分析法就是根据结论的要求,通过对题干和选择支的关系进行观察分析、寻求充分条件,发现规律,从而做出正确判断的一种方法,分析法可分为定性分析法和定量分析法.

例9、若定义在区间(-1,0)内的函数满足,则a的取值范围是:

A.         B.      C.       D.

【解析】要使成立,只要2a和x+1同时大于1或同时小于1成立,当时,,则,故选A.

例10、用n个不同的实数可得个不同的排列,每个排列为一行写成一个行的矩阵,对第i行,记,

()例如用1、2、3排数阵如图所示,由于此数阵中每一列各

数之和都是12,所以,那么用1,

2,3,4,5形成的数阵中,

A.-3600        B.1800         C.-1080          D.-720

【解析】时,,每一列之和为,,

时,,每一列之和为,,故选C.

【题后反思】

分析法实际是一种综合法,它要求在解题的过程中必须保持和平的心态、仔细、认真的去分析、学习、掌握、验证学习的结果,再运用所学的知识解题,对考察学生的学习能力要求较高.

(七)极端值法

  从有限到无限,从近似到精确,从量变到质变,应用极端值法解决某些问题,可以避开抽象、复杂的运算,隆低难度,优化解题过程.

例11、对任意都有:

A.     B.

C.     D.

【解析】当时,,,故排除A、B,

当时,,,故排除C,因此选D.

例12、设,且,则

A.     B.

C.      D.

【解析】∵,∵令,则,

易知:,故应选A.

【题后反思】

有一类比较大小的问题,使用常规方法难以奏效(或过于繁杂),又无特殊值可取,在这种情况下,取极限往往会收到意想不到的效果.

(八)估值法

由于选择题提供了唯一正确的选择支,解答又无需过程,因此可通过猜测、合情推理、估算而获得答案,这样往往可以减少运算量,避免“小题大做”.

例13、如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,,EF与面AC的距离为2,则该多面体的体积为:

A.     B.5     C.6      D.

【解析】由已知条件可知,EF//面ABCD,则F到平面ABCD

的距离为2,∴,而该多面体的体积必大于6,故选D.

例14、已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是:

A.            B.         C.          D.

【解析】设球的半径为R,的外接圆半径,则,故选D.

【题后反思】

有些问题,由于受条件,无法(有时也没有必要)进行精确的运算和判断,而又能依赖于估算,估算实质上是一种数字意义,它以正确的算理为基础,通过合理的观察、比较、判断、推理,从而做出正确的判断、估算、省去了很多推导过程和比较复杂的计算,节省了时间,从而显得快捷.其应用广泛,它是人们发现问题、研究问题、解决问题的一种重要的运算方法.

(九)割补法

“级割善补”是解决几何问题常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题时间.

例15、一个四面体的所有棱长都为,四个顶点在同一

球面上,则此球的表面积为:

A.      B.     C.     D.

【解析】如图,将正四面体ABCD补成正方体,则正四面体、正方体的中心与其外接球的球心共一面,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径,故,选A.

【题后反思】

“割”即化整为零,各个击破,将不易求解的问题,转化为易于求解的问题;“补”即代分散不集中,着眼整体,补成一个“规则图形”来解决问题,当我们遇到不规则的几何图形或几何体时,自然要想到“割补法”.

【模拟演练】

(1)已知是锐角,且,则的取值范围是:

A.         B.          C.        D.

  (2)若,,则A交B补中元素的个数为:

A.0          B.1          C.2            D.3

  (3)已知集合,,则

A.         B.        C.        D.

  (4)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是:

A.     B.      C.     D.

  (5)如果n是正偶数,则

A.         B.        C.        D.

  (6)函数,则区间[a,b]上是增函数,且,则函数在[a,b]上是:

A.增函数       B.减函数      C.有最大值M      D.有最小值—M

(7)函数的最小正周期是:

A.           B.           C.2          D.4

  (8)过点A(1,-1),B(-1,1)且圆心在直线上的圆的方程是:

       A.       B.

C.       D.

  (9)定义在上的奇函数,在上为增函数,当时,的图像如下图所示,则不等式的解集是:

A.     B.

C.   D.

  (10)函数的图像与函数的图像交点的个数为:

         A.1          B.2          C.3         D.4

  (11)如下图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且均为正三角形,EF//AB,EF=2,则该多面体的体积为:

        A.     B.     C.       D.

  

(12)如下图,直三棱柱ABC—A1B1C1的体积为V,P、

Q分别为侧棱AA1、和CC1上的点,且AP=C1Q,则四棱

锥B—A1PQC的体积为:

   A.   B.   C.    D.

(13)如右图所示,在正方体AC1中,

E为AD的中点,O为侧面AA1B1B

的中心,F为CC1上任意一点,则

异面直线OF与BE所成的角是:

  A.   B.   C.   D.

(14)要得到函数的图像,只需把函数的图像:

       A.向右平移个单位           B.向左平移个单位

C.向右平移个单位           D.向左平移个单位

(15)函数的定义域为[a,b],值域为[0,2],则区间[a,b]的长度b-a的最小值是:   A.2          B.         C.3        D.

(16)已知函数,正实数a,b,c满足,若实数d是函数的一个零点,那么下列四个判断:①db;③dc,其中可能成立的个数为:

       A.1          B.2          C.3         D.4

(17)设函数,则使得成立的m的取值为:

       A.10        B.0,-1        C.0,-2,10    D.1,-1,11

(18)已知点P是椭圆上的动点,F1,F2分别为椭圆的左右焦点,O为坐标原点,则的取值范围是:

       A.     B.      C.     D.

(1)D   (2)C  (3)B  (4)C  (5)B  (6)C  (7)B  (8)C  (9)A

(10)C  (11)A  (12)B (13)D  (14)C  (15)D  (16)B (17)D (18)D

文档

高考数学总复习:高考中选择题的解题方法与技巧

高考数学总复习:高考中选择题的解题方法与技巧【重点知识回顾】高考数学选择题占总分值的.其解答特点是“四选一”,快速、准确、无误地选择好这个“一”是十分重要的.选择题和其它题型相比,解题思路和方法有着一定的区别,产生这种现象的原因在于选择题有着与其它题型明显不同的特点:①立意新颖、构思精巧、迷惑性强、题材内容相关相近,真假难分;②技巧性高、灵活性大、概念性强、题材内容储蓄多变、解法奇特;③知识面广、跨度较大、切入点多、综合性强.正因为这些特点,使得选择题还具有区别与其它题型的考查功能:①能在较大
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top