
1.如图1,已知双曲线y=(>0)与直线y=k′ x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2)则点B的坐标为_____________;若点A的横坐标为m,则点B的坐标可表示为_____________;(2)如图2,过原点O作另一条直线l,交双曲线y=(>0)于P,Q两点,点P在第一象限.①说明四边形APBQ一定是平行四边形;②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.
2.我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题.
如图,在同一直角坐标系中,正比例函数的图象可以看作是:
将x轴所在的直线绕着原点O逆时针旋转α度角后的图形.
若它与反比例函数y=的图象分别交于第一、三象限的点B、D,已知点A(-m,0)、C(m,0)(m是常数,且m>0).
(1)直接判断并填写:不论α取何值,四边形ABCD的形状一定是_____________;
(2)①当点B为(p,1)时,四边形ABCD是矩形,试求p、α和m的值;
②观察猜想:对①中的m值,能使四边形ABCD为矩形的点B共有几个?(不用证明)
(3)试探究:四边形ABCD能不能是菱形?若能,直接写出B点坐标;若不能,说明理由.
3.如图,是反比例函数y=-和y=-在第二象限中的图像,点A在y=-的图像上,点A的横坐标为m(m<0),AC∥y轴交y=-的图像于点C,AB、CD均平行于x轴,分别交y=-、y=-的图像于点B、D.
(1)用m表示A、B、C、D的坐标;
(2)求证:梯形ABCD的面积是定值;
4、如图,四边形OABC是面积为4的正方形,函数y=(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数y=(x>0)的图象交于点E、F,求线段EF所在直线的解析式.
跟踪训练
1.如图,已知直线y=-2x+b与双曲线y=(k>0且k≠2)相交于第一象限内的两点P(1,k)、Q(,y2).
(1)求点Q的坐标(用含k的代数式表示);
(2)过P、Q分别作坐标轴的垂线,垂足为A、C,两垂线相交于点B.是否存在这样的k值,使得△OPQ的面积等于△BPQ面积的二倍?若存在,求k的值;若不存在,请说明理由.(P、Q两点请自己在图中标明)
2.在平面直角坐标系中,函数y=(x>0,m是常数)的图象经过点A(1,4)、点B(a,b),其中a>1.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,AC与BD相交于点M,连结AD、DC、CB与AB.
(1)求m的值;
(2)求证:DC∥AB;
(3)当AD=BC时,求直线AB的函数解析式
