【例 2】下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.
【巩固】两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积.
【例 3】如图,李大伯给一块长方形田地喷药,喷药器所能喷洒的范围是以李大伯的落脚点为中心,边长2米的正方形区域,他从图中的点出发,沿最短路线(图中虚线)走,走过88米到达点,恰好把这块田地全部喷完,这块田地的面积是多少平方米?
【例 4】(第六届”走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛)右图中甲的面积比乙的面积大__________平方厘米.
【巩固】如图,平行四边形ABCD种,,直角三角形ECB的边,已知阴影部分的总面积比三角形EFG的面积大,求平行四边形ABCD的面积.
【例 5】如图,ABCD是的长方形,DEFG是的长方形,求与的面积差.
【例 6】有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方米,如果使宽为60米,长不变,那么它的面积比原来增加2720平方米,原来的长和宽各是多少米?
【巩固】(希望杯培训题)如右图所示,在一个正方形上先截去宽分米的长方形,再截去宽分米的长方形,所得图形的面积比原正方形减少平方分米.原正方形的边长是______分米.
【巩固】如图,一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是多少平方厘米?
【例 7】如图,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?
【例 8】如图所示,直角三角形中有一个长方形,求长方形的面积?
【例 9】一个边长为20厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个正方形.求第五个正方形的面积?
【巩固】(2008年第七届”小机灵杯”数学竞赛决赛)如图是由个大小不同的正方形叠放而成的,如果最小的正方形(阴影部分)的周长是,那么最大的正方形的边长是 .
【例 10】已知图中大正方形的面积是22平方厘米,小正方形面积是多少平方厘米?
【巩固】如图所示,外侧大正方形的边长是,在里面画两条对角线、一个圆、两个正方形,阴影的总面积为,最小的正方形的边长为多少厘米?
【例 11】有一个边长为16厘米的正方形,连接每边的中点构成第二个正方形,再连接每边的中点构成第三个正方形,第四个正方形.求图中阴影部分的面积?
【例 12】(2008年全国小学生”我爱数学夏令营”数学竞赛)如图,边长为的正方形中有一等宽的十字,其面积(阴影部分)为,则十字的小正方形面积为 .
【例 13】下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?(单位:厘米)
【巩固】(2008年武汉明心奥数挑战赛)如图所示,四个相叠的正方形,边长分别是5、7、9、11.问灰色区与黑色区的面积的差是多少?
【例 14】甲、乙、丙三个正方形,它们的边长分别是6、8、10厘米,乙的一个顶点在甲的中心上,丙的一个顶点在乙的中心上.这三个正方形的覆盖面积是多少平方厘米?
【例 15】有个大小不同的正方形和.如下左图所示的那样,在将正方形的对角线的交点与正方形的一个顶点相重叠时,相重叠部分的面积为正方形面积的.求与的边长之比.如果当按下右图那样,将和反向重叠的话,所重叠部分的面积是的几分之几?
左图 右图
【例 16】有一个正方形水池(图中阴影部分),在它的周围修一个宽是8米的草地,草地的面积为480平方米,求水池的边长?
【例 17】(2008年北京”数学解题能力展示”读者评选活动复赛)如图所示,一个长方形广场的正有一个长方形的水池.水池长米、宽米.水池周围用边长为米的方砖一圈一圈地向外铺.恰好铺了若干圈,共用了块方砖,那么共铺了 圈.
【巩固】(2008年”陈省身杯”国际青少年数学邀请赛)如图,个相同的长方形和个小正方形拼成一个大正方形,已知其中小正方形的面积为平方厘米,大正方形的面积为平方厘米,则其中长方形的长为 厘米,宽 厘米.
【例 18】街心花园里有一个正方形花坛,四周有一条宽1米的甬道(如图),如果甬道的面积是12平方米,那么中间花坛的面积是多少平方米?
【巩固】在一个正方形的小花园周围,环绕着宽米的水池,水池面积为平方米,那么正方形花园的面积是多少平方米?
【巩固】(第四届《小数报》数学竞赛决赛试题)有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米.小正方形的面积是多少平方厘米?
【例 19】在一个正方形中放入一个四个顶点与大正方形相接的一个小正方形(如图),如果两个正方形的周长相差厘米,面积相差平方厘米,求小正方形的面积是多少平方厘米?
【例 20】计划修建一个正方形的花坛,并在花坛周围种上米宽的草坪,草坪的面积为平方米,那么修建这个花坛需要占地多少平方米?
【例 21】从一块正方形的玻璃板上锯下宽为米的一个长方形玻璃条后,剩下的长方形的面积为平方米,请问锯下的长方形玻璃条的面积等于多少?
【例 22】图中,甲、乙两个正方形的边长的和是厘米,甲正方形比乙正方形的面积大平方厘米.求乙正方形的面积.
【例 23】有一大一小两块正方形试验田,他们的周长相差米,面积相差平方米,那么小正方形试验田的面积是多少平方米?
【例 24】(第十二届“迎春杯”刊赛试题)如图,边长是整数的四边形的面积是48平方厘米,FB为8厘米.那么,正方形的面积是 平方厘米.
【例 25】如图,一个正方形被分成4个小长方形,它们的面积分别是平方米、平方米、平方米和平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?
【例 26】长方形的周长是厘米,以这个长方形的每一条边为边长向外画正方形.已知这四个正方形的面积之和为平方厘米,那么长方形的面积是多少平方厘米?
【巩固】(第四届华杯复赛试题)如图,长方形的周长是16厘米,在它的每一条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68平方厘米,求长方形的面积?
【例 27】一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道黑条,黑条宽都是2厘米,这条手帕白色部分的面积是多少?
【例 28】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示.如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?
图1 图2
【例 29】7个完全相同的长方形拼成了图中阴影部分,图中空白部分的面积是多少平方厘米?
【例 30】(第五届”祖冲之杯”数学邀请赛)如右图所示,在长方形中,放入六个形状大小相同的长方形(尺寸如图),图中阴影部分的面积是__________.
【例 31】若干同样大小的长方形小纸片摆成了如图所示的图形.已知小纸片的宽是12厘米,问阴影部分的总面积是多少平方厘米?
【例 32】一个大长方形若能分割成若干个大小不同的小正方形,则称为完美长方形.下面一个长方形是由9个小正方形组成的完美长方形.图中正方形和的边长分别是7厘米和4厘米,那么这个完美长方形的面积分别是多少平方厘米?
【巩固】(2008年中国小学数学竞赛选拔赛)如图:有一个矩形可以被分割为个正方形,其中最小的正方形(阴影部分)面积为,请问这个矩形之面积为多少平方厘米?
【例 33】图中数字分别表示两个长方形和一个直角三角形的面积,另一个三角形的面积是 .
【例 34】如图,一个矩形被分成八个小矩形,其中有五个矩形的面积如图中所示(单位:平方厘米),问大矩形的面积是多少平方厘米?
【巩固】阳阳用四块小长方形恰好拼成了一个大的长方形,如图所示.现在知道其中三块长方形的面积分别为平方厘米、平方厘米、平方厘米,那么,阴影部分的面积是多少?
【巩固】(南京市第三届”兴趣杯”少年数学邀请赛决赛试题)如图,矩形被分割成9个小矩形.其中有5个小矩形的面积如图所示.矩形的面积为 .
【例 35】有红、黄、绿三块大小一样的正方形纸片,放在一个底面为正方形的盒内,它们之间相互叠合(见下图).已知露在外面的部分中,红色面积是,黄色面积是,绿色面积是.求正方形盒底的面积.
【例 36】如图所示,在正方形内,红色、绿色正方形的面积分别是和,且红、绿两个正方形有一个顶点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形两条对角线的交点.那么黄色正方形的面积是 .
【巩固】如图所示,在正方形中,红色,绿色正方形的面积分别是和,且红、绿两个正方形有一个顶点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形两条对角线的交点,求黄色正方形面积.
【例 37】如图,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形的重叠部分,C、D、E是空出的部分,每一部分都是矩形,它们的面积比是A:B:C:D:E=1:2:3:4:5,那么这个长方形的长与宽之比是________.
【例 38】(2005全国华罗庚金杯少年数学邀请赛)如图如果长方形的面积为平方厘米,且厘米、厘米、厘米、厘米,那么请你求出四边形的面积是多少厘米?
【巩固】(南京市第三届”兴趣杯”少年数学邀请赛预赛)长方形的广告牌长为10米,宽为8米,,,,分别在四条边上,并且比低5米,在的左边2米,四边形的面积是 平方米.
【例 39】(2004全国华罗庚金杯少年数学邀请赛)直角三角形的直角边为厘米,厘米,问:图中三个正方形的面积之和比个三角形的面积之和大多少?
【例 40】如图所示,甲、乙、丙、丁四个长方形拼成一个正方形,中间阴影为正方形.已知甲、乙、丙、丁四个长方形面积的和是,四边形的面积是.⑴求正方形的边长?⑵求甲、乙、丙、丁四个长方形周长的总和?
图 图 图
【例 41】如图,平面上是正方形,是等腰梯形,它的上底厘米,下底厘米.求三角形的面积.
【例 42】右图是由9个等边三角形拼成的六边形,已知中间最小的等边三角形的边长是1,问:这个六边形的周长是多少?
【例 43】把正三角形的每条边三等分,以各边的中间一段为边向外作小正三角形,得到一个六角形.再将这个六角形的六个”角”(即小正三角形)的两边三等分,又以它的中间段为边向外作更小的小正三角形,这样就得到如右图所示的图形.如果所作的最小的小正三角形的面积为平方厘米,求如图中整个图形的面积.
【例 44】(1992年小学数学奥林匹克初赛)如图,长方形的面积是小于100的数.它的内部有三个边长是整数的正方形.正方形②的边长是长方形长的,正方形①的边长是长方形宽的.那么,图中阴影部分的面积是