最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2014山东青岛

来源:动视网 责编:小OO 时间:2025-09-25 16:18:09
文档

2014山东青岛

2014年山东省青岛市市北区中考一模数学试卷一、选择题(共8小题,每小题3分,满分24分)1.﹣的绝对值是()A.2014B.﹣2014C.D.﹣2.京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是()A.1个B.2个C.3个D.43.从正面观察下图的两个物体,看到的是()4.国家总理李克强在工作报告中总结2013年的工作时提到:2013年城镇新增就业1310万人,创历史新高,那么1310万人用科学记数法可
推荐度:
导读2014年山东省青岛市市北区中考一模数学试卷一、选择题(共8小题,每小题3分,满分24分)1.﹣的绝对值是()A.2014B.﹣2014C.D.﹣2.京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是()A.1个B.2个C.3个D.43.从正面观察下图的两个物体,看到的是()4.国家总理李克强在工作报告中总结2013年的工作时提到:2013年城镇新增就业1310万人,创历史新高,那么1310万人用科学记数法可
2014年山东省青岛市市北区中考一模

数学试卷

 

一、选择题(共8小题,每小题3分,满分24分)

1.﹣的绝对值是(  )

 A.

2014B.

﹣2014

C.

D.

2.京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是(  )

 A.

1个

B.

2个

C.

3个

D.

4
3.从正面观察下图的两个物体,看到的是(  )

4.国家总理李克强在工作报告中总结2013年的工作时提到:2013年城镇新增就业1310万人,创历史新高,那么1310万人用科学记数法可以表示为(  )万人.

 A.

131.0×101

B.

13.10×102

C.

1.310×103

D.

0.1310×104

5.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是(  )

 A.

掷一枚正六面体的骰子,出现1点的概率

 B.

抛一枚硬币,出现正面的概率
 C.

任意写一个整数,它能2被整除的概率

 D.

从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率

6.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(  )

 A.

4B.

5C.

6D.

8
 

7.将等边三角形ABC放置在如图的平面直角坐标系中,已知其边长为2,现将该三角形绕点C按顺时针方向旋转90°,则旋转后点A的对应点A′的坐标为(  )

 A.

(1+,1)

B.

(﹣1,1﹣)

C.

(﹣1,﹣1)

D.

(2,)

8.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有(  )个.

 A.

2B.

3C.

4D.

5
 

二、填空题(共6小题,每小题3分,满分18分)

9.计算:2﹣1﹣(π﹣3)0﹣= _________ .

10.甲、乙两支足球队,每支球队队员身高数据的平均数都是1.70米,方差分别为S甲2=0.29,S乙2=0.35,其身高较整齐的是 _________ 球队.

11.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x名学生,根据题意,列出方程为 _________ .

12.如图,直线y=x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=的图象上,CD平行于y轴,S△OCD=,则k的值为 _________ .

 

13.如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为 _________ .

 

14.如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为 _________ ;面积小于2011的阴影三角形共有 _________ 个.

 

三、解答题(共1小题,)

15.(7分)已知:如图,△ABC是一块等腰三角形的余料,王师傅要在该余料上面截出一块面积最大的半圆形桌面,请你用尺规作图的方法画出这块半圆形桌面.(在题目的原图中完成作图)

 

四、解答题(共6小题,)

16.(8分)(1)解方程组:;

(2)化简:(﹣)+.

 

17.(6分)(为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:

(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?

(2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.

(3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.

 

18.(6分)甲、乙两位同学玩摸球游戏,准备了A、B两个口袋,其中A口袋中放有标号为2,3,5,6的4个球,B口袋中放有标号为1,4,7的3个球.游戏规则:甲从A口袋摸一球,乙从B口袋摸一球,摸出的两球所标数字之差(甲摸取数字﹣乙摸取数字)大于0时甲胜,小于0时乙胜,你认为这个游戏规则对双方公平吗?请说明理由.若不公平,请你对本游戏设计一个对双方都公平的游戏规则.

 

19.(6分)佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.

(1)求第一次水果的进价是每千克多少元?

(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?

 

20.(8分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:

(1)坡顶A到地面PO的距离;

(2)古塔BC的高度(结果精确到1米).

(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

 

21.(9分)(如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.

(1)点A的坐标为 _________ ,直线l的解析式为 _________ ;

(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;

(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;

(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.

 

二、填空题(共6小题,每小题3分,满分18分)

9. ﹣1 .

10. 甲 .

11. x(x﹣1)=2070(或x2﹣x﹣2070=0) .

12. 3 .

13. +2(cm2) .

14.  ; 6 个.

三、解答题(共1小题,)

15.

解:如图所示:半圆O即为所求.

四、解答题(共6小题,)

16.

解:(1),

将②代入①得:3x=2x+2,

解得:x=2,

将x=2代入②得:y=3,

则方程组的解为;

(2)原式=•

=•

=.

17.

解:(1)根据题意得:40÷40%=100(人),

则这一天上午7:00~12:00这一时间段共有100人闯红灯;

(2)根据题意得:7﹣8点的人数为100×20%=20(人),

8﹣9点的人数为100×15%=15(人),

9﹣10点占=10%,

10﹣11点占1﹣(20%+15%+10%+40%)=15%,人数为100×15%=15(人),

补全图形,如图所示:

9~10点所对的圆心角为10%×360°=36°,10~11点所对应的圆心角的度数为15%×360°=54°;

(3)根据图形得:这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数为15人,中位数为15人.

18.

解:游戏公平,理由为:

列表得:

2356
1(2,1)

(3,1)

(5,1)

(6,1)

4(2,4)

(3,4)

(5,4)

(6,4)

7(2,7)

(3,7)

(5,7)

(6,7)

所有等可能的情况有20种,其中摸出的两球所标数字之差(甲数字﹣乙数字)大于0的情况有10中,等于0的情况有6种,小于0的情况有6种,

则P甲获胜==,P乙获胜=,

∴游戏公平.

19.

解:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,

根据题意得:﹣=20,

解得:x=6,

经检验,x=6是原方程的解,

(2)第一次购水果1200÷6=200(千克).

第二次购水果200+20=220(千克).

第一次赚钱为200×(8﹣6)=400(元).

第二次赚钱为100×(9﹣6.6)+120×(9×0.5﹣6×1.1)=﹣12(元).

所以两次共赚钱400﹣12=388(元),

答:第一次水果的进价为每千克6元,该老板两次卖水果总体上是赚钱了,共赚了388元.

20.

解:(1)过点A作AH⊥PO,垂足为点H,

∵斜坡AP的坡度为1:2.4,

∴=,

设AH=5k,则PH=12k,由勾股定理,得AP=13k,

∴13k=26,

解得k=2,

∴AH=10,

答:坡顶A到地面PO的距离为10米.             

(2)延长BC交PO于点D,

∵BC⊥AC,AC∥PO,

∴BD⊥PO,

∴四边形AHDC是矩形,CD=AH=10,AC=DH,

∵∠BPD=45°,

∴PD=BD,

设BC=x,则x+10=24+DH,

∴AC=DH=x﹣14,

在Rt△ABC中,tan76°=,即≈4.01.      

解得x≈19.                             

答:古塔BC的高度约为19米.

21.

解:(1)∵C(7,4),AB∥CD,

∴D(0,4).

∵sin∠DAB=,

∴∠DAB=45°,

∴OA=OD=4,

∴A(﹣4,0).

设直线l的解析式为:y=kx+b,则有

解得:k=1,b=4,

∴y=x+4.

∴点A坐标为(﹣4,0),直线l的解析式为:y=x+4.

(2)在点P、Q运动的过程中:

①当0<t≤1时,如答图1所示:

过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC=5.

过点Q作QE⊥x轴于点E,则BE=BQ•cos∠CBF=5t•=3t.

∴PE=PB﹣BE=(14﹣2t)﹣3t=14﹣5t,

S=PM•PE=×2t×(14﹣5t)=﹣5t2+14t;

②当1<t≤2时,如答图2所示:

过点C、Q分别作x轴的垂线,垂足分别为F,E,

则CQ=5t﹣5,PE=AF﹣AP﹣EF=11﹣2t﹣(5t﹣5)=16﹣7t,

S=PM•PE=×2t×(16﹣7t)=﹣7t2+16t;

③当点M与点Q相遇时,DM+CQ=CD=7,

即(2t﹣4)+(5t﹣5)=7,解得t=.

当2<t<时,如答图3所示:

MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,

S=PM•MQ=×4×(16﹣7t)=﹣14t+32.

(3)①当0<t≤1时,S=﹣5t2+14t=﹣5(t﹣)2+,

∵a=﹣5<0,抛物线开口向下,对称轴为直线t=,

∴当0<t≤1时,S随t的增大而增大,

∴当t=1时,S有最大值,最大值为9;

②当1<t≤2时,S=﹣7t2+16t=﹣7(t﹣)2+,

∵a=﹣7<0,抛物线开口向下,对称轴为直线t=,

∴当t=时,S有最大值,最大值为;

③当2<t<时,S=﹣14t+32

∵k=﹣14<0,

∴S随t的增大而减小.

又∵当t=2时,S=4;

当t=时,S=0,

∴0<S<4.

综上所述,当t=时,S有最大值,最大值为.

(4)△QMN为等腰三角形,有两种情形:

①如答图4所示,点M在线段NM的右侧上,

MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,MN=DM=2t﹣4,

由MN=MQ,得16﹣7t=2t﹣4,解得t=;

②如答图5所示,当Q在MN的左侧时,5t﹣5+(2t﹣4)﹣7=(2t﹣4)+4﹣4,

解得:t=.

故当t=或t=时,△QMN为等腰三角形.

文档

2014山东青岛

2014年山东省青岛市市北区中考一模数学试卷一、选择题(共8小题,每小题3分,满分24分)1.﹣的绝对值是()A.2014B.﹣2014C.D.﹣2.京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是()A.1个B.2个C.3个D.43.从正面观察下图的两个物体,看到的是()4.国家总理李克强在工作报告中总结2013年的工作时提到:2013年城镇新增就业1310万人,创历史新高,那么1310万人用科学记数法可
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top