
2011级国贸2班 王泽桐 201100620729
一、背景资料
自从改革开放以来,建筑业和房地产业蓬勃发展,居民的居住环境日益改善,人均住房使用面积逐步增加,居民生活水平也大幅提高,因此,我国目前正处于旺盛的住房需求时期。而从我国目前的实际情况来看,我国城市居民住房的人均居住面积水平还比较低,制约我国城市居民居住水平的主要因素还是住房面积。特别是伴随着我国城市化的进程,大量农村人口进入城市,这导致了对住房需求的进一步加剧。因此,城市居民的人均住房使用面积是现今阶段我们衡量城市居民居住水平的主要方面
居民住房的人均使用面积的大小关系到广大居民的切身利益,是居民生活水平的重要体现。本文依据当前房地产业现状,从计量经济学的角度来验证一下居民收入水平.物价水平以及房地产销售价格等因素对其的影响程度。从回归结果看出,城镇居民人均住房面积与人均可支配收入呈正向的线性关系,与城镇居民价格消费指数呈负向的线性关系,同时我们也发现一些问题,值得深入思考。
本文利用《中国城市统计年鉴》和《国家统计局》的数据资料,从计量经济学的角度来对城镇居民住房人均使用面积的影响因素进行分析。
二、指标体系的建立:
(1)变量的选取
纵观我国的房地产现状,我国正处于住房需求旺盛时期,这种现象的出现很大程度上是由于人民生活水平的大幅提高。与此同时城市居民的收入和消费习惯以及城市住房的价格水平等因素都对其人均使用面积有着不同程度的影响。本文选取了城镇居民家庭人均可支配收入、城镇居民消费指数、城镇住房平均销售价格三个变量进行分析。
(2)数据的选取 数据来源:《中国统计年鉴》;《中国统计局》
| 时间 | Y(平方米) | X1(元) | X2 | X3(元) |
| 1990 | 13.7 | 1510.2 | 101.3 | 1320 |
| 1991 | 14.2 | 1700.6 | 105.1 | 1487 |
| 1992 | 14.8 | 2026.6 | 108.6 | 1519 |
| 1993 | 15.2 | 2577.4 | 116.1 | 1534 |
| 1994 | 15.7 | 3496.2 | 125 | 1624 |
| 1995 | 16.2 | 4283 | 116.8 | 1676 |
| 1996 | 17 | 4838.9 | 108.8 | 1729 |
| 1997 | 17.8 | 5160.3 | 103.1 | 1790 |
| 1998 | 18.7 | 5425.1 | 99.4 | 1854 |
| 1999 | 19.4 | 5854 | 98.7 | 1857 |
| 2000 | 20.3 | 6280 | 100.8 | 1948 |
| 2001 | 21 | 6859.6 | 100.7 | 2017 |
| 2002 | 22.8 | 7702.8 | 99 | 2092 |
| 2003 | 23.7 | 8472.2 | 100.9 | 2197 |
| 2004 | 25 | 9421.6 | 103.3 | 2778 |
| 2005 | 26.1 | 10493 | 101.6 | 3168 |
| 2006 | 27.1 | 11759.5 | 101.5 | 3367 |
| 2007 | 28 | 13785.8 | 104.5 | 35 |
| 2008 | 28.6 | 15780.8 | 105.6 | 3743 |
| 2009 | 29.4 | 17147.7 | 99.1 | 3860 |
| 2010 | 30 | 19109.4 | 103.2 | 4120 |
| 2011 | 32.7 | 21809.8 | 105.4 | 4681 |
X1:城镇居民家庭人均可支配收入; X2: 城镇居民消费指数;
X3: 城镇住房平均销售价格。
实证分析
(1)模型建立
Y=C+β1X1+β2X2+β3X3+U
参数估计:
| Dependent Variable: Y | |||||||||
| Method: Least Squares | |||||||||
| Date: 06/24/13 Time: 11:14 | |||||||||
| Sample: 1990 2011 | |||||||||
| Included observations: 22 | |||||||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. | |||||
| C | 23.39256 | 4.830003 | 4.843178 | 0.0001 | |||||
| X1 | 0.000463 | 0.000279 | 1.661251 | 0.1140 | |||||
| X2 | -0.117943 | 0.044307 | -2.661985 | 0.0159 | |||||
| X3 | 0.0027 | 0.001600 | 1.727212 | 0.1012 | |||||
| R-squared | 0.960041 | Mean dependent var | 21.70000 | ||||||
| Adjusted R-squared | 0.953381 | S.D. dependent var | 5.901977 | ||||||
| S.E. of regression | 1.274316 | Akaike info criterion | 3.485661 | ||||||
| Sum squared resid | 29.22984 | Schwarz criterion | 3.684032 | ||||||
| Log likelihood | -34.34227 | F-statistic | 144.1548 | ||||||
| Durbin-Watson stat | 0.278721 | Prob(F-statistic) | 0.000000 | ||||||
多重共线性的检验
解释变量相关系数矩阵:
| Y | X1 | X2 | X3 | |
| Y | 1.000000 | 0.968241 | -0.450079 | 0.961444 |
| X1 | 0.968241 | 1.000000 | 0.361063 | 0.980109 |
| X2 | -0.450079 | -0.361063 | 1.000000 | -0.322265 |
| X3 | 0.961444 | 0.980109 | 0.322265 | 1.000000 |
运用OLS方法逐一求Y对各个解释变量的回归
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 06/24/13 Time: 11:27 | ||||
| Sample: 1990 2011 | ||||
| Included observations: 22 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 13.17070 | 0.565377 | 23.29545 | 0.0000 |
| X1 | 0.001027 | 6.08E-05 | 16.88050 | 0.0000 |
| R-squared | 0.937490 | Mean dependent var | 21.17619 | |
| Adjusted R-squared | 0.934200 | S.D. dependent var | 5.498809 | |
| S.E. of regression | 1.410528 | Akaike info criterion | 3.616198 | |
| Sum squared resid | 37.80221 | Schwarz criterion | 3.715677 | |
| Log likelihood | -35.97008 | F-statistic | 284.9511 | |
| Durbin-Watson stat | 0.221774 | Prob(F-statistic) | 0.000000 | |
Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 06/24/13 Time: 11:33 | ||||
| Sample: 1990 2011 | ||||
| Included observations: 22 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 59.20394 | 17.34424 | 3.413465 | 0.0029 |
| X2 | -0.362481 | 0.1993 | -2.196947 | 0.0406 |
| R-squared | 0.202571 | Mean dependent var | 21.17619 | |
| Adjusted R-squared | 0.160601 | S.D. dependent var | 5.498809 | |
| S.E. of regression | 5.037938 | Akaike info criterion | 6.1622 | |
| Sum squared resid | 482.2356 | Schwarz criterion | 6.261742 | |
| Log likelihood | -62.70377 | F-statistic | 4.826577 | |
| Durbin-Watson stat | 0.140726 | Prob(F-statistic) | 0.040630 | |
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 06/24/13 Time: 11:36 | ||||
| Sample: 1990 2011 | ||||
| Included observations: 22 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 7.488818 | 0.959854 | 7.802041 | 0.0000 |
| X3 | 0.005837 | 0.000383 | 15.23929 | 0.0000 |
| R-squared | 0.924374 | Mean dependent var | 21.17619 | |
| Adjusted R-squared | 0.920394 | S.D. dependent var | 5.498809 | |
| S.E. of regression | 1.551468 | Akaike info criterion | 3.806673 | |
| Sum squared resid | 45.73400 | Schwarz criterion | 3.906151 | |
| Log likelihood | -37.97006 | F-statistic | 232.2359 | |
| Durbin-Watson stat | 0.235617 | Prob(F-statistic) | 0.000000 | |
Yi=13.1707+0.001X1i,
再逐步回归,将剩余变量逐一代入式Yi=13.1707+0.001X1i中,得如下几个模型:
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 06/24/13 Time: 11:43 | ||||
| Sample: 1990 2011 | ||||
| Included observations: 22 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 23.27831 | 5.015671 | 4.1116 | 0.0002 |
| X1 | 0.000983 | 6.05E-05 | 16.24810 | 0.0000 |
| X2 | -0.093058 | 0.045925 | -2.026301 | 0.0578 |
| R-squared | 0.949100 | Mean dependent var | 21.17619 | |
| Adjusted R-squared | 0.943445 | S.D. dependent var | 5.498809 | |
| S.E. of regression | 1.3076 | Akaike info criterion | 3.5059 | |
| Sum squared resid | 30.78092 | Schwarz criterion | 3.655181 | |
| Log likelihood | -33.81262 | F-statistic | 167.8187 | |
| Durbin-Watson stat | 0.288183 | Prob(F-statistic) | 0.000000 | |
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 06/24/13 Time: 11:45 | ||||
| Sample: 1990 2011 | ||||
| Included observations: 22 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 11.23028 | 1.850165 | 6.069882 | 0.0000 |
| X1 | 0.000698 | 0.000305 | 2.2750 | 0.0343 |
| X3 | 0.001921 | 0.001745 | 1.100843 | 0.2855 |
| R-squared | 0.941433 | Mean dependent var | 21.17619 | |
| Adjusted R-squared | 0.934926 | S.D. dependent var | 5.498809 | |
| S.E. of regression | 1.402729 | Akaike info criterion | 3.6281 | |
| Sum squared resid | 35.41770 | Schwarz criterion | 3.795498 | |
| Log likelihood | -35.28595 | F-statistic | 144.6701 | |
| Durbin-Watson stat | 0.1415 | Prob(F-statistic) | 0.000000 | |
Y=23.27831+0.000983X1-0.093058X2
异方差性的检验
由G-Q检验,对样本X1由大到小排序,去除中间6个样本,剩余16个样本,再分成两个样本容量为8的子样本,对两个子样本分别用OLS法回归。
子样本1:
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 06/24/13 Time: 11:49 | ||||
| Sample: 1 8 | ||||
| Included observations: 8 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 17.34438 | 11.33961 | 1.529539 | 0.1867 |
| X1 | 0.000551 | 6.07E-05 | 9.082290 | 0.0003 |
| X2 | 0.025285 | 0.111537 | 0.226692 | 0.8296 |
| R-squared | 0.944445 | Mean dependent var | 27.23750 | |
| Adjusted R-squared | 0.922223 | S.D. dependent var | 2.190197 | |
| S.E. of regression | 0.610814 | Akaike info criterion | 2.131948 | |
| Sum squared resid | 2.265470 | Schwarz criterion | 2.161739 | |
| Log likelihood | -5.527793 | F-statistic | 42.50040 | |
| Durbin-Watson stat | 0.0517 | Prob(F-statistic) | 0.000727 | |
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 06/24/13 Time: 11:52 | ||||
| Sample: 15 22 | ||||
| Included observations: 8 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 13.62547 | 1.690443 | 8.060295 | 0.0005 |
| X1 | 0.000951 | 8.67E-05 | 10.96766 | 0.0001 |
| X2 | -0.0091 | 0.015547 | -0.636215 | 0.5526 |
| R-squared | 0.960862 | Mean dependent var | 15.57500 | |
| Adjusted R-squared | 0.945206 | S.D. dependent var | 1.390529 | |
| S.E. of regression | 0.325496 | Akaike info criterion | 0.873063 | |
| Sum squared resid | 0.419738 | Schwarz criterion | 0.902853 | |
| Log likelihood | -0.492251 | F-statistic | 61.37592 | |
| Durbin-Watson stat | 1.234388 | Prob(F-statistic) | 0.000303 | |
在5%的显著性水平下,自由度为(5,5)的F分布临界值为F0.05(5,5)=5.05,于是拒绝同方差的假设,表明原模型存在异方差。
异方差性修正:
采用加权最小二乘法进行估计:
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Date: 06/24/13 Time: 11:57 | ||||
| Sample: 1 22 | ||||
| Included observations: 22 | ||||
| Weighting series: 1/ABS(E1) | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 22.87183 | 1.929531 | 11.85357 | 0.0000 |
| X1 | 0.000978 | 3.27E-05 | 29.85833 | 0.0000 |
| X2 | -0.0888 | 0.016949 | -5.242930 | 0.0001 |
| Weighted Statistics | ||||
| R-squared | 0.998248 | Mean dependent var | 19.801 | |
| Adjusted R-squared | 0.998053 | S.D. dependent var | 14.71744 | |
| S.E. of regression | 0.9352 | Akaike info criterion | 2.105880 | |
| Sum squared resid | 7.5843 | Schwarz criterion | 2.255097 | |
| Log likelihood | -19.11174 | F-statistic | 699.2485 | |
| Durbin-Watson stat | 0.714927 | Prob(F-statistic) | 0.000000 | |
| Unweighted Statistics | ||||
| R-squared | 0.949032 | Mean dependent var | 21.17619 | |
| Adjusted R-squared | 0.943369 | S.D. dependent var | 5.498809 | |
| S.E. of regression | 1.308569 | Sum squared resid | 30.82237 | |
| Durbin-Watson stat | 0.2762 | |||
R2=0.998248; D.W.= 0.714927; F=699.2485
从结果来看,拟合优度提高了,t统计量也有了改进。此时,模型已不存在异方差。
自相关性的检验
在5%的显著性水平下,样本容量为21,D.W.的临界值du=1.42;dl=1.22,
D.W.= 0.714927 第一步: Y=0.841304+0.000122X1-0.015947X2. 该模型的经济意义是:经过计量检验得出,城镇居民人均住房面积与城镇居民家庭人均可支配收入呈正相关,随着家庭人均收入的增加,城镇居民的购房需求也会相应上升;城镇居民居民人均住房面积与城镇居民价格消费指数呈负相关,随着价格消费指数的增加,居民的购房热情会随之下降。 该模型的统计检验:经计算此模型R2=0.9163修正后的R2=0.2370 ,表明模型在整体上拟合的比较好。再从t检验值看,5%显著性水平下自由度为n-k-1=21-2-1=18的t分布临界值为t0.025(18)=2.101,说明该模型通过了显著性检验;最后从F检验来看,模型的F值为 F=51.76785,而5%显著性水平下自由度分别为k=2和n-k-1=18的F分布临界值为F0.05(2,18)=3.55,说明模型在总体上是高度显著的。 结论和建议 分析结果表明城市居民人均可支配收入,消费习惯对城镇居民人均住房使用面积的影响是较为显著的。城市住房的价格水平对其人均使用面积也有着一定程度的影响。随着家庭人均收入的增加,城镇居民的购房需求也会相应上升;随着价格消费指数的增加,居民的购房热情会随之下降。 居民住房的人均使用面积的大小关系到广大居民的切身利益,是居民生活水平的重要体现。虽然中国的房地产业取得了很大的进步,为提高我国居民的住房水平作出了巨大的贡献,但是在发展中也暴露出了很多问题,房价高,有效需求不足是当前的主要难点。需要采取大力消费空置商品房,建设经济适用住房,积极开放住房二、三级市场等措施加以解决。
第二步:Dependent Variable: Y Method: Least Squares Date: 06/24/13 Time: 12:01 Sample(adjusted): 2 22 Included observations: 20 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 1.191376 2.653053 0.449059 0.6603 X1 7.14E-05 0.000383 0.186667 0.8546 X2 -0.0349 0.022306 -1.553337 0.1427 X1(-1) -0.000218 0.000401 -0.545073 0.5943 X2(-1) 0.015717 0.014666 1.071679 0.3020 Y(-1) 1.126086 0.0636 16.94999 0.0000 R-squared 0.9981 Mean dependent var 21.55000 Adjusted R-squared 0.997542 S.D. dependent var 5.360921 S.E. of regression 0.265791 Akaike info criterion 0.431110 Sum squared resid 0.9025 Schwarz criterion 0.729829 Log likelihood 1.6805 F-statistic 1543.106 Durbin-Watson stat 2.766506 Prob(F-statistic) 0.000000
在5%的显著性水平下,样本容量为21,D.W.的临界值du=1.42;dl=1.22,因为D.W.=2.27,duDependent Variable: Y1 Method: Least Squares Date: 06/24/13 Time: 12:04 Sample(adjusted): 2 22 Included observations: 20 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 0.841304 1.002582 0.839137 0.4130 X11 0.000122 1.24E-05 9.845124 0.0000 X22 -0.015947 0.009234 -1.726918 0.1023 R-squared 0.9163 Mean dependent var -1.799393 Adjusted R-squared 0.2370 S.D. dependent var 0.634200 S.E. of regression 0.251794 Akaike info criterion 0.217070 Sum squared resid 1.077804 Schwarz criterion 0.3630 Log likelihood 0.829299 F-statistic 51.76785 Durbin-Watson stat 2.266995 Prob(F-statistic) 0.000000
