最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

函数的基本性质知识点与经典题型归纳

来源:动视网 责编:小OO 时间:2025-09-25 16:23:20
文档

函数的基本性质知识点与经典题型归纳

函数的基本性质1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。注意:1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一
推荐度:
导读函数的基本性质1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。注意:1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一
函数的基本性质

1.奇偶性

(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。

如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。

注意:

1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

② 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:

① 首先确定函数的定义域,并判断其定义域是否关于原点对称;

② 确定f(-x)与f(x)的关系;

③ 作出相应结论:

若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;

若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数。

(3)简单性质:

①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;

②设,的定义域分别是,那么在它们的公共定义域上:

奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶

2.单调性

(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2)),那么就说f(x)在区间D上是增函数(减函数);

注意:

1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

② 必须是对于区间D内的任意两个自变量x1,x2;当x1(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。

(3)设复合函数y= f[g(x)],其中u=g(x) , A是y= f[g(x)]定义域的某个区间,B是映射g : x→u=g(x) 的象集:

①若u=g(x) 在 A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= f[g(x)]在A上是增函数;

②若u=g(x)在A上是增(或减)函数,而y= f(u)在B上是减(或增)函数,则函数y= f[g(x)]在A上是减函数。

(4)判断函数单调性的方法步骤

利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:

1 任取x1,x2∈D,且x12 作差f(x1)-f(x2);

3 变形(通常是因式分解和配方);

4 定号(即判断差f(x1)-f(x2)的正负);

⑤ 下结论(即指出函数f(x)在给定的区间D上的单调性)。

(5)简单性质

①奇函数在其对称区间上的单调性相同;

②偶函数在其对称区间上的单调性相反;

    ③在公共定义域内:

增函数增函数是增函数;减函数减函数是减函数;增函数减函数是增函数;减函数增函数是减函数。

3.最值

(1)定义:

最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。

最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。

注意:

1 函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M;

② 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M)。

(2)利用函数单调性的判断函数的最大(小)值的方法:

① 利用二次函数的性质(配方法)求函数的最大(小)值;

2 利用图象求函数的最大(小)值;

③ 利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

4.周期性

(1)定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)= f(x),则称f(x)为周期函数;

(2)性质:①f(x+T)= f(x)常常写作若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期;②若周期函数f(x)的周期为T,则f(ωx)(ω≠0)是周期函数,且周期为。

例1 函数在R上为奇函数,且,则当,         .

例2 函数,是(   )

A.偶函数  B.奇函数   C.不具有奇偶函数 D.与有关

例3 在区间上为增函数的是(   )                         

A.       B.      C.      D.

例4 函数是单调函数时,的取值范围 (   ) 

A.        B.      C .       D. 

例5 函数在区间是增函数,则的递增区间是  (   )

A.        B.       C.      D.

例6 如果偶函数在具有最大值,那么该函数在有 (   )

A.最大值   B.最小值   C .没有最大值    D. 没有最小值

例7 已知为偶函数,且,当时,,则 (    )

A.2006          B.4         C.        D.    

例8 已知,求函数得单调递减区间,并求最值.

文档

函数的基本性质知识点与经典题型归纳

函数的基本性质1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。注意:1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top