利用下列常用求和公式求和是数列求和的最基本最重要的方法.
1、等差数列求和公式:
2、等比数列求和公式:
3、 、
5、
[例1] 已知,求的前n项和.
解:由
由等比数列求和公式得 (利用常用公式)
===1-
[例2] 设Sn=1+2+3+…+n,n∈N*,求的最大值.
解:由等差数列求和公式得 , (利用常用公式)
∴ =
==
∴ 当 ,即n=8时,
题1.等比数列的前n项和Sn=2n-1,则=
题2.若12+22+…+(n-1)2=an3+bn2+cn,则a= ,b= ,c=
.
解: 原式= 答案:
二、错位相减法求和
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an· bn}的前n项和,其中{ an }、{ bn }分别是等差数列和等比数列.
[例3] 求和:………………………①
解:由题可知,{}的通项是等差数列{2n-1}的通项与等比数列{}的通项之积
设………………………. ② (设制错位)
①-②得 (错位相减)
再利用等比数列的求和公式得:
∴
[例4] 求数列前n项的和.
解:由题可知,{}的通项是等差数列{2n}的通项与等比数列{}的通项之积
设…………………………………①
………………………………② (设制错位)
①-②得 (错位相减)
∴
练习题1 已知 ,求数列{an}的前n项和Sn.
答案:
练习题2 的前n项和为____
答案:
三、反序相加法求和
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.
[例5] 求证:
证明: 设………………………….. ①
把①式右边倒转过来得
(反序)
又由可得
…………..…….. ②
①+②得 (反序相加)
∴
[例6] 求的值
解:设…………. ①
将①式右边反序得
…………..② (反序)
又因为
①+②得 (反序相加)
=
∴ S=44.5
题1 已知函数
(1)证明:;
(2)求的值.
解:(1)先利用指数的相关性质对函数化简,后证明左边=右边
(2)利用第(1)小题已经证明的结论可知,
两式相加得:
所以.
练习、求值:
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
[例7] 求数列的前n项和:,…
解:设
将其每一项拆开再重新组合得
(分组)
当a=1时,= (分组求和)
当时,=
[例8] 求数列{n(n+1)(2n+1)}的前n项和.
解:设
∴ =
将其每一项拆开再重新组合得
Sn= (分组)
=
= (分组求和)
=
五、裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
(1) (2)
(3) (4)
(5)
(6)
(7)
(8)
[例9] 求数列的前n项和.
解:设 (裂项)
则 (裂项求和)
=
=
[例10] 在数列{an}中,,又,求数列{bn}的前n项的和.
解: ∵
∴ (裂项)
∴ 数列{bn}的前n项和
(裂项求和)
= =
[例11] 求证:
解:设
∵ (裂项)
∴ (裂项求和)
=
===
∴ 原等式成立
练习题1.
答案:.
练习题2。 =
答案:
六、分段求和法(合并法求和)
针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.
[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.
解:设Sn= cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°
∵ (找特殊性质项)
∴Sn= (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···
+(cos°+ cos91°)+ cos90° (合并求和)
= 0
[例13] 数列{an}:,求S2002.
解:设S2002=
由可得
……
∵ (找特殊性质项)
∴ S2002= (合并求和)
=
=
=
=5
[例14] 在各项均为正数的等比数列中,若的值.
解:设
由等比数列的性质 (找特殊性质项)
和对数的运算性质 得
(合并求和)
=
=
=10
练习、求和:
练习题1 设,则=___
答案:2.
练习题2 .若Sn=1-2+3-4+…+(-1)n-1·n,则S17+S33+S50等于 ( )
A.1 B.-1 C.0 D .2
解:对前n项和要分奇偶分别解决,即: Sn= 答案:A
练习题 3 1002-992+982-972+…+22-12的值是
A.5000 B.5050 C.10100 D.20200
解:并项求和,每两项合并,原式=(100+99)+(98+97)+…+(2+1)=5050.答案:B
七、利用数列的通项求和
先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.
[例15] 求之和.
解:由于 (找通项及特征)
∴
= (分组求和)
=
=
=
[例16] 已知数列{an}:的值.
解:∵ (找通项及特征)
= (设制分组)
= (裂项)
∴ (分组、裂项求和)
=
=
提高练习:
1.已知数列中,是其前项和,并且,
⑴设数列,求证:数列是等比数列;
⑵设数列,求证:数列是等差数列;
2.设二次方程x-+1x+1=0(n∈N)有两根α和β,且满足6α-2αβ+6β=3.
(1)试用表示a;
3.数列中,且满足
⑴求数列的通项公式;
⑵设,求;
说明:本资料适用于高三总复习,也适用于高一“数列”一章的学习。