Li4Ti5O12∗
(,361005)
(Li4Ti5O12),,
.,650TiO2,, 650TiO2,80024h Li4Ti5O12,.
,,,
TB321,TM9111005-3093(2007)01-0082-05
Structure and performance of lithium battery anode
material Li4Ti5O12
HE Hui CHENG Xuan ZHANG Ying∗∗
(Department of Materials Science and Engineering,State Key Laboratory for Physical Chemistry of Solid Surfaces,
Xiamen University,Xiamen361005)
*Supported by National Natural Science Foundation of China No.10472098.
Manuscript received April20,2006;in revised form August20,2006.
**To whom correspondence should be addressed,Tel:(0592)2180999,E–mail:yzh@xmu.edu.cn ABSTRACT The precursors of Li4Ti5O12were prepared by sol–gel method and the Li4Ti5O12sam-ples were synthesized by calcining.The structure and surface species of Li4Ti5O12were characterized by thermogravimetry(TG),X–ray diffraction(XRD),infrared spectroscopy(IR)and Raman spectroscopy.
The effects of the synthesis temperatures on the structure and species of Li4Ti5O12were systematically investigated.The results revealed that two types of TiO2were formed and coexisted when the synthesis temperature was below650,which adversely influenced the structure of Li4Ti5O12,and TiO2gradually disappeared after the synthesis temperature was above650.Single–phase and pure Li4Ti5O12with excellent electrochemical performance was obtained after the sample was prepared at800and kept heated for24h.
KEY WORDS inorganic non–metallic materials,lithium titanate,sol–gel method,anode material
/.,
,
,[1∼3].,
.
F d–3m Li[M2]O4,
.[M2]O4M–O,[M2]O4
[4].,
[Li]8a[Li1/3Ti5/3]16d[O4]32e,,
*10472098.
20020;2006820.
:,
1%[5],
[6∼8],
,.
Li4Ti5O12TiO2( )Li2CO3LiOH·H2O
,[9∼11].
,,
,[11].
,,
Li4Ti5O12,
.
1
"c":
(
1:5),
,,,Li
Ti4:5.80,
,–50
,.400∼800
24h,
30min,.
Netzsch STA400
,50mL
/min,10/min,
25∼1000.DTG
,.Philips Panalytical X pert X
XRD,(Cu Kα1,λ=1.5406nm),
0.0167◦,10◦∼90◦.Nico-let OMNIC
.4000∼400cm−1,
32.Dilor LabRam I
Raman.
He–Ne,632.8nm,50 ,4mW,
10s.
600,650,75080024h
,.
,(::PVDF=85 :10:5),NMP,
,,,
,(Lab master100),
,LiPF6/EC+DMC(1:1), Celgerd2300,2035.
,0.5∼2.1V,0.1C Arbin.
2
1,200
7.35%,103,
.200400
,,
.,
Ti–O,
51.4%.400,
,.
2,450,
TiO2(I41/amd),
400,TiO2.
1
Fig.1TG and DTG curves of precursor
2XRD
Fig.2XRD patterns of samples calcined at different temperatures for24h(•:anatase TiO2,◦:ru-
tile TiO2, :spinel Li4Ti5O12)
500,TiO2
TiO2,TiO2.
,Li4Ti5O12,
,.650Li4Ti5O12 ,TiO2. 750TiO2,
Li4Ti5O12.750800
XRD,750
.800
,,750
.,
(Fd–3m),
8a,16d ,Li:Ti=4:5,32e[9,12].
3,1500cm−1C–O
[13],, 800.,8421
3
Fig.3IR spectra samples calcined at different tem-peratures
Li2CO3,
,Li2CO3Ti
.Li2CO3, XRD.400,Ti–O(460cm−1650cm−1)[13] ,,Ti–O
,,, Ti–O,.
4300∼800cm−1
.,,
,TiO2,
.TiO2Li4Ti5O12
1.500
TiO2(I41/amd),500TiO2
,TiO2;550
(F d–3m),
TiO2(P42/mmm),800
.400,,
,,TiO2
,550
.800,
(F d–3m).XRD
Raman,75080024h
4
Fig.4Raman spectra samples calcined at different temperatures
XRD;Raman
,
,TiO2
.,750800
.
,Li4Ti5O12: ,
,Ti(OH)4[13∼16],,
,TiO2 (T<450),TiO2 (T≈500),TiO2(T< 650);750,
Li2CO3,TiO2Li4Ti5O12.
5,
600,650,75080024h.
,600
.600∼650
24h,;750 80024h, 1.5V
,800.
2,600,
88mAh/g,33mAh/g,
,20mAh/g,
1TiO2,Li4Ti5O12
Table1Raman active phonon and vibration sources for TiO2and Li4Ti5O12
Position of peak/cm−1
Sample
A1g B1g A1g+B1g E g T2g TiO2[15](P42/mmm)610448
TiO2[16](I41/amd)3985150
Li4Ti5O12[17,18](F d–3m)659425,3531:Li4Ti5O1285
51,2
Fig.5Cyclic discharge curves of thefirst and second cycle of of samples calcined at different temperatures
21,2
Table2Properties of cycling performance from Fig.5
Material
600650750800
Charge capacity/(mAh/g)88169170191 First
Discharge capacity/(mAh/g)33140146169
Charge capacity/(mAh/g)20123153177 Second
Discharge capacity/(mAh/g)19115144165
Loss/%7727107
77%.650,
169mAh/g,
27%.750,
170mAh/g,
(175mAh/g[9]),10%,
800,,
191mAh/g,,
7%.
,600,
Li4Ti5O12,
TiO2,
;,TiO2
,F d–3m,
Li4Ti5O12,.
3
Li4Ti5O12.
650,TiO2
Li4Ti5O12,
750Li4Ti5O12,
TiO2,800,
Li4Ti5O12.
1K.Tokumitsu, A.Mabuchi,H.Fujimoto,T.Kasuh, Charge/discharge characteristics of synthetic carbon anode for lithium secondary battery,J.Power Sources, 54,444(1995)8621
2Y.Masumura,S.Wang,J.Mondori,Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries, J.Electrochem.Soc.,142,2914(1995)
3N.Imanishi,S.Ohashi,T.Ichikawa,Y.Takeda, O.Yamamoto,Carbon lithium anodes for lithium secondary batteries,J.Power Sources,39,185(1992)
4M.M.Thackeray,Structural considerations of layered and spinel lithiated oxides for lithium ion batteries,J.Elec-trochem.Soc.,142,2558(1995)
5M.M.Thackeray, A.de Kock,M.H.Rossouw, D.Liles, Spinel electrodes from the Li–Mn–O system for recharge-able lithium battery applications,J.Electrochem.Soc., 139,363(1992)
6T.Ohzuku, A.Ueda,N.Yamamoto,Zero–strain insertion material of Li[Li1/3Ti5/3]O4for rechargeable lithium cells, J.Electrochem.Soc.,142,1431(1995)
7T.Ohzuku,A.Ueda,Why transition metal(di)oxides are the most attractive materials for batteries,Solid State Ion-ics,69,201(1994)
8K.Zaghib,M.Armand,M.Gauthier,Electrochemistry of anodes in solid–state Li–ion polymer batteries,J.Elec-trochem.Soc.,145(9),3135(1998)
9G.X.Wang, D.H.Bradhurst,S.X.Dou,K.H.Liu,Spinel Li[Li1/3Ti5/3]O4as an anode material for lithium ion bat-teries,J.Power Sources,83,156(1999)
10YANG Xiaoyan,HUA Shounan,ZHANG Shuyong,The study on lithiated titanium composite oxides as negative electrode for lithium–ion battery,Electrochemistry,6(3), 350(2000)
(,,,
,,6(3),350(2000))11K.M.Colbow,J.R.Dahn,R.R.Haering,Structure and electrochemistry of the spinel oxides LiTi2O4and Li4/3Ti5/3O4,J.Power Sources,26,397(19)
12 D.W.Muphy,R.J.Cava,S.M.Zahurak,A.Santoro,Ternary
Li x TiO2phases from insertion reactions,Solid State Ionic, 9∼10,413(1983)
13W ANG Yukun,WU Jinqiao,Effects of preparing condi-tions on size and morphology of nanometer TiO2particles, Journal of Xi’an Shiyou University,18(2),45(2003)
(,,TiO2
,,18(2),45(2003))
14YAO Minqi,WEI Yinghui,HU Lanqing,Fabrication of nanometer powders by the sol–gel method,Rare Metal Materials and Engineering,5,325(2002)
(,,,–,
,5,325(2002))
15Xie Dan,Pan wei,Study on BaBi4Ti4O15nanoscaled powders prepared by sol–gel method,Journal of Materials Letters,57,2970(2003)
16LIU Dongqiang,LAI Qiongyu,HAO Yanjing,Study on synthesis and mechanism of Li4Ti5O12by sol–gel method, Chinese Journal of Inorganic Chemistry,20(7),829(2004) (,,,Li4Ti5O12–
,,20(7),829(2004))
17K.A.Striebel, A.Rougier, C.R.Horne,Electrochemical studies of substituted spinel thinfilms,J.Electrochem.
Soc.,146(12),4339(1999)
18H.S.Park,S.J.Hwang,J.H.Choy,Reationship between chemical bonding character and electrochemical perfor-mance in nickel–substituted lithium manganese oxides,J.
Phys.Chem.B,105,4860(2001)