
When baking in a rectangular pan heat is concentrated in the 4 corners and the product gets overcooked at the corners (and to a lesser extent at the edges). In a round pan the heat is distributed evenly over the entire outer edge and the product is not overcooked at the edges. However, since most ovens are rectangular in shape using round pans is not efficient with respect to using the space in an oven.
Develop a model to show the distribution of heat across the outer edge of a pan for pans of different shapes - rectangular to circular and other shapes in between.
Assume
1. A width to length ratio of W/L for the oven which is rectangular in shape.
2. Each pan must have an area of A.
3. Initially two racks in the oven, evenly spaced.
Develop a model that can be used to select the best type of pan (shape) under the following conditions:
1. Maximize number of pans that can fit in the oven (N)
2. Maximize even distribution of heat (H) for the pan
3. Optimize a combination of conditions (1) and (2) where weights p and (1- p) are assigned to illustrate how the results vary with different values of W/L and p.
In addition to your MCM formatted solution, prepare a one to two page advertising sheet for the new Brownie Gourmet Magazine highlighting your design and results.
PROBLEM A:终极点心锅
当用一个长方形的平底锅烘焙时,热量集中在四个角上,食品在四个角上烘培过度(以及在边缘处较小程度的烘培过度)。对于一个圆形锅,热量在整个外边缘是均匀分布的,而且食品不会在边缘处烘培过度。然而,由于大多数烤箱的形状是长方形,对于烤箱中空间的使用,使用圆形锅空间利用效率较低。
建立一个模型来表示不同形状的平底锅—长方形、圆形与其它介于二者之间形状的外边缘的热分布。
假设
1. 一个形状是长方形的烤炉,长宽比是W/L。
2. 每个锅的面积是A。
3. 烤炉中最初的两个架子,是均匀间隔的。
在下列条件下,建立一个模型用来选择平底锅的最佳形状,
1. 最大化适合烤炉的平底锅的数目。
2. 对于平底锅,最大限度的提高热的分布的均匀程度。
3. 优化条件(1)和条件(2)的组合,其中这两个条件分别被赋予权重p和(1-p),来阐明对于不同的W/L 和 p,结果是如何变化的。
除了你的MCM论文正文之外,另为点心美食杂志准备一到两页广告,来突出你的设计和结果。
问题B:水,水,哪里都有
Fresh water is the limiting constraint for development in much of the world. Build a mathematical model for determining an effective, feasible, and cost-efficient water strategy for 2013 to meet the projected water needs of [pick one country from the list below] in 2025, and identify the best water strategy. In particular, your mathematical model must address storage and movement; de-salinization; and conservation. If possible, use your model to discuss the economic, physical, and environmental implications of your strategy. Provide a non-technical position paper to governmental leadership outlining your approach, its feasibility and costs, and why it is the “best water strategy choice.”
淡水资源制约了世界大部分地方的发展,请建立一个数学模型为2013年确立一个有效的、可行的而且成本效益较好的策略来满足2025年某国的预测水需求(某国可以从以下提及的列表中选一),并给出最好的水资源管理策略。具体而言,你的数学模型必须考虑到水资源的储存和调度、海水淡化和水资源保护。如果可能,使用你的数学模型来讨论该策略的经济、物理和环境影响。以非技术角度写一篇文章给领导人阐述你的方法、方法的可行性和成本,同时阐明为什么你的策略是最好的选择。
Countries: United States, China, Russia, Egypt, or Saudi Arabia
国家:美国,中国,俄罗斯,埃及 或者 沙特阿拉伯
2013 ICM Problem
Network Modeling of Earth's Health
Background: Society is interested in developing and using models to forecast the
biological and environmental health conditions of our planet. Many scientific studies
have concluded that there is growing stress on Earth's environmental and biological
systems, but there are very few global models to test those claims. The UN-backed
Millennium Ecosystem Assessment Synthesis Report found that nearly two-thirds of
Earth's life-supporting ecosystems— including clean water, pure air, and stable
climate— are being degraded by unsustainable use. Humans are blamed for much of
this damage. Soaring demands for food, fresh water, fuel, and timber have contributed
to dramatic environmental changes; from deforestation to air, land, and water pollution.
Despite the considerable research being conducted on local habitats and regional
factors, current models do not adequately inform decision makers how their provincial
polices may impact the overall health of the planet. Many models ignore complex global
factors and are unable to determine the long-range impacts of potential policies. While
scientists realize that the complex relationships and cross-effects in myriad
environmental and biological systems impact Earth's biosphere, current models often
ignore these relationships or limit the systems' connections. The system complexities
manifest in multiple interactions, feedback loops, emergent behaviors, and impending
state changes or tipping points. The recent Nature article written by 22 internationally
known scientists entitled "Approaching a state shift in Earth's biosphere" outlines many
of the issues associated with the need for scientific models and the importance of
predicting potential state changes of the planetary health systems. The article provides
two specific quantitative modeling challenges in their call for better predictive models:
1) To improve bio-forecasting through global models that embrace the complexity
of Earth's interrelated systems and include the effects of local conditions on the
global system and vice versa.
2) To identify factors that could produce unhealthy global state-shifts and to show
how to use effective ecosystem management to prevent or limit these impending
state changes.
The resulting research question is whether we can build global models using local or
regional components of the Earth's health that predict potential state changes and help
decision makers design effective policies based on their potential impact on Earth's
health. Although many warning signs are appearing, no one knows if Planet Earth is
truly nearing a global tipping point or if such an extreme state is inevitable.
The Nature article and many others point out that there are several important elements
at work in the Earth's ecosystem (e.g., local factors, global impacts, multi-dimensional
factors and relationships, varying time and spatial scales). There are also many other
factors that can be included in a predictive model — human population, resource and
habitat stress, habitat transformation, energy consumption, climate change, land use
patterns, pollution, atmospheric chemistry, ocean chemistry, bio diversity, and political
patterns such as social unrest and economic instability. Paleontologists have studied
and modeled ecosystem behavior and response during previous cataclysmic state shifts
and thus historic-based qualitative and quantitative information can provide background
for future predictive models. However, it should be noted that human effects have
increased significantly in our current biosphere situation.
Requirements:
You are members of the International Coalition of Modelers (ICM) which will soon be
hosting a workshop entitled "Networks and Health of Planet Earth" and your research
leader has asked you to perform modeling and analysis in advance of the workshop.
He requires your team to do the following:
Requirement 1: Build a dynamic global network model of some aspect of Earth's
health (you develop the measure) by identifying local elements of this condition
(network nodes) and appropriately connecting them (network links) to track relationship
and attribute effects. Since the dynamic nature of these effects is important, this
network model must include a dynamic time element that allows the model to predict
future states of this health measure. For example, your nodes could be nations,
continents, oceans, habitats, or any combination of these or other elements which
together constitute a global model. Your links could represent nodal or environmental
influences, or the flow or propagation of physical elements (such as pollution) over time.
Your health measure could be any element of Earth's condition to include demographic,
biological, environmental, social, political, physical, and/or chemical conditions. Be
sure to define all the elements of your model and explain the scientific bases for your
modeling decisions about network measures, nodal entities, and link properties.
Determine a methodology to set any parameters and explain how you could test your
model if sufficient data were available. What kinds of data could be used to validate or
verify the efficacy of your model? (Note: If you do not have the necessary data to
determine parameters or perform verification, do not throw out the model. Your
supervisor realizes that, at this stage, good creative ideas and theories are as important
as verified data-based models.) Make sure you include the human element in your
model and explain where human behavior and government policies could affect the
results of your model.
Requirement 2: Run your model to see how it predicts future Earth health. You may
need to estimate parameters that you would normally determine from data.
(Remember, this is just to test and understand the elements of your model, not to use it
for prediction or decision making.) What kinds of factors will your model produce?
Could it predict state change or tipping points in Earth's condition? Could it provide
warning about global consequences of changing local conditions? Could it inform
decision makers on important policies? Do you take into account the human elements
in your measures and network properties?
Requirement 3: One of the powerful elements of using network modeling is the ability
to analyze the network structure. Can network properties help identify critical nodes or
relationships in your model? If so, perform such analysis. How sensitive is your model
to missing links or changing relationships? Does your model use feedback loops or
take into account uncertainties? What are the data collection issues? Does your
model react to various government policies and could it thus help inform planning?
Requirement 4: Write a 20-page report (summary sheet does not count in the 20
pages) that explains your model and its potential. Be sure to detail the strengths and
weaknesses of the model. Your supervisor will use your report as a major theme in the
upcoming workshop and, if it is appropriate and insightful to planetary health modeling,
will ask you to present at the upcoming workshop. Good luck in your network modeling
work!
Potentially helpful references include:
Anthony D. Barnosky, Elizabeth A. Hadly, Jordi Bascompte, Eric L. Berlow, James H. Brown,
Mikael Fortelius, Wayne M. Getz, John Harte, Alan Hastings, Pablo A. Marquet, Neo D.
Martinez, Arne Mooers, Peter Roopnarine, Geerat Vermeij, John W. Williams, Rosemary
Gillespie, Justin Kitzes, Charles Marshall, Nicholas Matzke, David P. Mindell, Eloy Revilla,
Adam B. Smith. "Approaching a state shift in Earth's biosphere,". Nature, 2012; 486 (7401): 52
DOI: 10.1038/nature11018
Donella Meadows, Jorgen Randers, and Dennis Meadows. Limits to Growth: The 30-year
update, 2004.
Robert Watson and A.Hamid Zakri. UN Millennium Ecosystem Assessment Synthesis Report,
United Nations Report, 2005.
University of California - Berkeley. "Evidence of impending tipping point for Earth."
ScienceDaily, 6 Jun. 2012. Web. 22 Oct. 2012.
2013ICM:地球健康的网络建模
背景:
全社会都在关注研究与应用模型来预测我们地球的生物和环境的健康状况。许多科学研究表明地球的环境和生物系统所面对的压力正在增加,但是能够验证这一观点的全局性模型却很少。联合国支持的千年生态系统评估综合报告发现近三分之二的地球上的生命支持系统包括干净的水,纯净的空气,和稳定的气候由于不可持续的利用正在逐渐退化。人类在很大程度上要为这种损害负责。对粮食,淡水,燃料,以及木材的飞涨的需求都导致了剧烈的环境变化,其中包括从森林砍伐到土地、空气和水的污染。尽管在一些局部的栖息地和区域已经进行了深入的研究,但是目前所有的模型还是不能充分告知决策者各地方的局部是如何来影响地球的整体健康状况的。许多模型忽视了复杂的整体因素,不能用于确定潜在的大范围影响。而科学家们意识到在无数的环境和生态系统中的复杂的关系和交叉作用影响着地球的生物圈,现有的模型常常忽视这些关系或者了系统的各要素之间的联系。系统的复杂性体现在多元互动,反馈回路,应急行为以及临界状态或者临界点的产生。最近由22个国际知名的科学家发表在《自然》杂志上的题为《地球的生物圈正在接近状态的改变》的论文概述了许多与科学模型的需要相关的问题,并且阐述了预测地球健康系统的潜在状态变化的重要性。这篇文章在呼吁建立更好的预测模型方面提出了两个具体的量化建模问题:
利用整体模型来改进生物预测,这些整体模型既要包括地球相互关联的系统的复杂性,还要包括局部条件对整体系统的影响,以及整体系统对局部条件的影响。
确定那些可能会产生不良的整体状态变化的因素,并且显示如何利用有效的生态管理来阻止或者这些即将发生的状态改变。
所导致的研究问题是我们是否可以利用局部的或者是区域性的地球健康状态以建立整体模型来预测潜在的状态改变,并且基于这些潜在的影响地球健康的因素帮助决策者制定一些有效的。虽然许多警告性的状况正在出现,但是没有人知道是否地球正在真正的接近一个整体的临界点,也没有人知道这种极端的状态是否是可以避免的。
《自然》杂志的那篇文章和许多其他的文章都指出地球的生态系统中有几个重要的因素正在起作用(例如:局部因素,整体影响,因素和相互关系,变化的时间和空间尺度)。还有许多其他因素,诸如人口,资源和栖息地的压力,栖息地的转换,能源消耗,气候变化,土地利用模式,污染,大气化学,海洋化学,生物多样性,政治模式如社会动荡和经济不稳定,这些都可以包括在一个预测模型中。古生物学家已经研究并且模拟了过去的几个大幅度的状态改变时期的生态系统的行为和反应。因此,基于历史的定性和定量的信息可以为未来的预测模型提供背景。然而,应该指出的是,在当前的生物圈,人类的影响已经显著的增加了。
要求:
假设你们是ICM的成员,将要主办一个主题为“网络与地球的健康”的研讨会,你们的研究组长要求你们在研讨会以前预先进行建模和分析。他要求你们小组做如下事情:
要求1:对于地球的健康状况的某一影响方面(你们自己选定),建立一个动态的全球网络模型,该模型通过识别这种情况下的局部要素(即网络节点)并合理地连接他们(即网络链路)来跟踪他们的关系和属性效应。由于这些效应的动态本质是重要的,这个网络模型必须包括一个动态的时间元素来使模型可以预测这个健康状况的影响方面的未来状态。例如,你们的节点可能是国家、洲、海洋、栖息地或这些元素的任意组合,或者是能够共同构成一个整体模型的其他元素。 你们的链路可以表示随着时间变化节点或环境的影响,或各种物理因素(如污染)的流动与扩散。你们所选的健康影响方式可以是地球状况的任意一方面,包括人口统计学方面的、生物学方面的、环境的、社会的、政治的、物理的和/或化学方面的状况。请确保对你们模型中的所有元素都进行了定义,并解释你们关于网络方式、节点实体和链路属性的模型决策的科学依据。确定一种方法来设置所有参数,解释如果有充足的样本数据如何测试你们的模型。哪些数据能够用来证实或验证你们的模型?(注意:如果你们没有必要的数据来确定参数或执行验证,也不要抛弃你们的模型。你们的组长认为,在这一步,创造性的想法和理论与经过验证的基于数据的模型是同等重要的。)确保在你们的模型中包括了人类因素,并解释人类行为和在哪些地方影响你们模型的结果。
要求2:运行你们的模型来看看它如何预测未来的地球健康状况。你们可能需要估计参数,一般情况下,这些参数是通过数据决定的。(记住:这只是测试和理解你们模型的元素,不是用它来预测和决策。)你们的模型将会产生哪些种类的因素?你们的模型是否能预测地球情况的状态变化或临界点?是否能对局部条件的变化对全局结果带来的影响进行预警?是否能在重要上对决策者提供资料?在你们所选的地球健康影响方式和网络属性中考虑了人类因素吗?
要求3:利用网络建模的一个强有力之处是它具有分析网络结构的能力。在你的模型中,网络属性能帮助识别关键节点或节点间的关系吗?如果能,进行这样的分析。你们的模型对于链路的缺失与节点间关系的改变的敏感性如何?你们的模型使用反馈回路或考虑不确定因素了吗?数据收集方面有哪些问题?你们的模型能对各种作出反应并因此有助于制定计划吗?
要求4:写一个20页的报告(不包括摘要)来解释你们的模型和它的潜力。确保要详细说明模型的优缺点。在将要到来的研讨会上,你们的组长将会使用你们的报告作为一个主要议题。如果你们的模型是合理的并且对地球的健康状况建模方面有深刻的见解,组长将会请你们在研讨会上作报告。
祝你们的网络建模工作顺利!
可能有用的参考文献:
Anthony D. Barnosky, Elizabeth A. Hadly, Jordi Bascompte, Eric L. Berlow, James H. Brown, Mikael Fortelius, Wayne M. Getz, John Harte, Alan Hastings, Pablo A. Marquet, Neo D. Martinez, Arne Mooers, Peter Roopnarine, Geerat Vermeij, John W. Williams, Rosemary Gillespie, Justin Kitzes, Charles Marshall, Nicholas Matzke, David P. Mindell, Eloy Revilla, Adam B. Smith. "Approaching a state shift in Earth's biosphere,". Nature, 2012; 486 (7401): 52DOI: 10.1038/nature11018
Donella Meadows, Jorgen Randers, and Dennis Meadows. Limits to Growth: The 30-year update, 2004.
Robert Watson and A.Hamid Zakri. UN Millennium Ecosystem Assessment Synthesis Report, United Nations Report, 2005.
University of California - Berkeley. "Evidence of impending tipping point for Earth."
ScienceDaily, 6 Jun. 2012. Web. 22 Oct. 2012.
