
自动控制原理1
一、 单项选择题(每小题1分,共20分)
1. 系统和输入已知,求输出并对动态特性进行研究,称为( c )
A.系统综合 B.系统辨识 C.系统分析 D.系统设计
2. 惯性环节和积分环节的频率特性在( d)上相等。
A.幅频特性的斜率 B.最小幅值 C.相位变化率 D.穿越频率
3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( d )
A.比较元件 B.给定元件 C.反馈元件 D.放大元件
4. ω从0变化到+∞时,延迟环节频率特性极坐标图为(a )
A.圆 B.半圆 C.椭圆 D.双曲线
5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个( d )
A.比例环节 B.微分环节 C.积分环节 D.惯性环节
6. 若系统的开环传 递函数为10,则它的开环增益为(c ) s(5s?2)
A.1 B.2 C.5 D.10
7. 二阶系统的传递函数G(s)?5,则该系统是(b ) 2 s?2s?5
A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统
8. 若保持二阶系统的ζ不变,提高ωn,则可以(b )
A.提高上升时间和峰值时间 B.减少上升时间和峰值时间
C.提高上升时间和调整时间 D.减少上升时间和超调量
9. 一阶微分环节G(s)?1?Ts,当频率1时,则相频特性?G(j?)为( a ) T
A.45° B.-45° C.90° D.-90°
10.最小相位系统的开环增益越大,其( d )
A.振荡次数越多 B.稳定裕量越大
C.相位变化越小 D.稳态误差越小
11.设系统的特征方程为D?ss4?8s3?17s2?16s?5?0,则此系统 ( )
A.稳定 B.临界稳定 C.不稳定 D.稳定性不确定。
12.某单位反馈系统的开环传递函数为:G?sk,当k=( )时,闭环系统s(s?1)(s?5)
临界稳定。
A.10 B.20 C.30 D.40
13.设系统的特征方程为D?s3s4?10s3?5s2?s?2?0,则此系统中包含正实部特征的个数有( )
A.0 B.1 C.2 D.3
14.单位反馈系统开环传递函数为G?s
差为( ) 5,当输入为单位阶跃时,则其位置误2s?6s?s
A.2 B.0.2 C.0.5 D.0.05
15.若已知某串联校正装置的传递函数为Gc(s)?s?1,则它是一种( ) 10s?1
A.反馈校正 B.相位超前校正
C.相位滞后—超前校正 D.相位滞后校正
16.稳态误差ess与误差信号E(s)的函数关系为( )
A.ess?limE(s) B.ess?limsE(s) s?0s?0
C.ess?limE(s) D.ess?limsE(s) ss
17.在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是( )
A.减小增益 B.超前校正 C.滞后校正 D.滞后-超前
18.相位超前校正装置的奈氏曲线为( )
A.圆 B.上半圆 C.下半圆 D.45°弧线
19.开环传递函数为G(s)H(s)=K,则实轴上的根轨迹为( ) 3s(s?3)
A.(-3,∞) B.(0,∞) C.(-∞,-3) D.(-3,0)
20.在直流电动机调速系统中,霍尔传感器是用作( )反馈的传感器。
A.电压 B.电流 C.位移 D.速度
二、 填空题(每小题1分,共10分)
21.闭环控制系统又称为
22.一线性系统,当输入是单位脉冲函数时,其输出象函数与相同。
23.一阶系统当输入为单位斜坡函数时,其响应的稳态误差恒为
24.控制系统线性化过程中,线性化的精度和系统变量的
25.对于最小相位系统一般只要知道系统的就可以判断其稳定性。
26.一般讲系统的位置误差指输入是
27.超前校正是由于正相移的作用,使截止频率附近的明显上升,从而具有较大 的稳定裕度。
28.二阶系统当共轭复数极点位于 线上时,对应的阻尼比为0.707。
29.PID调节中的“P”指的是控制器。
30.若要求系统的快速性好,则闭环极点应距虚轴越_越好。
三、 名词解释(每小题3分,共15分)
31.稳定性
32.理想微分环节
33.调整时间
34.正穿越
35.根轨迹
四、 简答题(每小题5分,共25分)
36.为什么说物理性质不同的系统,其传递函数可能相同 ? 举例说明。
37.一阶惯性系统当输入为单位阶跃函数时,如何用实验方法确定时间常数T ?其调整时间ts和时间常数T有何关系,为什么?
38.什么是主导极点?主导极点起什么作用,请举例说明。
39.什么是偏差信号?什么是误差信号?它们之间有什么关系?
40.根轨迹的分支数如何判断?举例说明。
五、 计算题(第41、42题每小题5分,第43 、44题每小题10分,共30分)
41.求图示方块图的传递函数,以Xi (s)为输入,X0 (s)为输出。
43.欲使图所示系统的单位阶跃响应的最大超调量为20%,峰值时间为2秒,试确定K和 K1值。
44.系统开环频率特性由实验求得,并已用渐近线表示出。试求该系统的开环传递函数。(设系统是最小相位系统)。
自动控制原理2
一、 单项选择题(每小题1分,共20分)
1. 系统已给出,确定输入,使输出尽可能符合给定的最佳要求,称为( )
A.最优控制 B.系统辨识 C.系统分析 D.最优设计
2. 与开环控制系统相比较,闭环控制系统通常对( )进行直接或间接地测量,通过反馈环节去影响控制信号。
A.输出量 B.输入量 C.扰动量 D.设定量
3. 在系统对输入信号的时域响应中,其调整时间的长短是与( )指标密切相关。
A.允许的峰值时间 B.允许的超调量
C.允许的上升时间 D.允许的稳态误差
4. 主要用于产生输入信号的元件称为( )
A.比较元件 B.给定元件 C.反馈元件 D.放大元件
5. 某典型环节的传递函数是G?s1,则该环节是( ) 5s?1
A.比例环节 B.积分环节 C.惯性环节 D.微分环节
6. 已知系统的微分方程为30?t6x?0?t2x0?t2xi?t?,则系统的传递函数是( ) x
21 B. 3s2?6s?23s2?6s?2
21C.2 D.2 2s?6s?32s?6s?3A.
7. 引出点前移越过一个方块图单元时,应在引出线支路上( )
A.并联越过的方块图单元 B.并联越过的方块图单元的倒数
C.串联越过的方块图单元 D.串联越过的方块图单元的倒数
78. 设一阶系统的传递G(s)?,其阶跃响应曲线在t=0处的切线斜率为( ) s?2
A.7 B.2 C.7 D.1 22
9. 时域分析的性能指标,哪个指标是反映相对稳定性的( )
A.上升时间 B.峰值时间 C.调整时间 D.最大超调量
10. 二阶振荡环节乃奎斯特图中与虚轴交点的频率为( )
A.谐振频率 B.截止频率 C.最大相位频率 D.固有频率
11. 设系统的特征方程为D?ss4?2s3?s2?2s?1?0,则此系统中包含正实部特征的个数为( )
A.0 B.1 C.2 D.3
12. 一般为使系统有较好的稳定性,希望相位裕量?为( )
A.0~15? B.15?~30? C.30?~60? D.60?~90?
13. 设一阶系统的传递函数是G?s2,且容许误差为5%,则其调整时间为( ) s?1
14. A.1 B.2 C.3 D.4 某一系统的速度误差为零,则该系统的开环传递函数可能是( ) A.s?dKKK B. C. D.2 s(s?a)(s?b)s(s?a)Ts?1s(s?a)
4,当输入为单位斜坡时,其加速度误s2(s2?3s?2)15. 单位反馈系统开环传递函数为G?s
差为( )
A.0 B.0.25 C.4 D.?
16. 若已知某串联校正装置的传递函数为Gc(s)?s?1,则它是一种( ) 0.1s?1
17. A.相位超前校正 B.相位滞后校正 C.相位滞后—超前校正 D.反馈校正 确定根轨迹大致走向,一般需要用( )条件就够了。
A.特征方程 B.幅角条件 C.幅值条件 D.幅值条件+幅角条件
某校正环节传递函数Gc(s)?18. 100s?1,则其频率特性的奈氏图终点坐标为( ) 10s?1
A.(0,j0) B.(1,j0) C.(1,j1) D.(10,j0)
19. 系统的开环传递函数为K,则实轴上的根轨迹为( ) s(s?1)(s?2)
A.(-2,-1)和(0,∞) B.(-∞,-2)和(-1,0)
C.(0,1)和(2,∞) D.(-∞,0)和(1,2)
20. A、B是高阶系统的二个极点,一般当极点A距离虚轴比极点B距离虚轴大于( )时,分析系统时可忽略极点A。
A.5倍 B.4倍 C.3倍 D.2倍
二、 填空题(每小题1分,共10分)
21.“经典控制理论”的内容是以
22.控制系统线性化过程中,变量的偏移越小,则线性化的精度。
23.某典型环节的传递函数是G(s)?1,则系统的时间常数是。 s?2
24.延迟环节不改变系统的幅频特性,仅使发生变化。
25.若要全面地评价系统的相对稳定性,需要同时根据相位裕量和
26.一般讲系统的加速度误差指输入是
27.输入相同时,系统型次越高,稳态误差越。
28.系统主反馈回路中最常见的校正形式是和反馈校正
29.已知超前校正装置的传递函数为Gc(s)?2s?1,其最大超前角所对应的频率0.32s?1
m
30.若系统的传递函数在右半S平面上没有
三、 名词解释(每小题3分,共15分)
31.数学模型
32.反馈元件
33.最大超调量
34.频率响应
35.幅值裕量
四、 简答题(每小题5分,共25分)
36.开环控制系统和闭环控制系统的主要特点是什么?
37.如何用实验方法求取系统的频率特性函数?
38.伯德图中幅频特性曲线的首段和传递函数的型次有何关系?
39.根轨迹与虚轴的交点有什么作用? 举例说明。
40.系统闭环零点、极点和性能指标的关系。
五、 计算题(第41、42题每小题5分,第43 、44题每小题10分,共30分)
41.根据图示系统结构图,求系统传递函数C(s)/R(s)。
42.建立图示系统的数学模型,并以传递函数形式表示。
43.已知系统的传递函数G(s)? 10,试分析系统由哪些环节组成并画出系统的Bodes(0.1s?1)
图。
44.电子心率起搏器心率控制系统结构如图所示,其中模仿心脏的传递函数相当于一个纯积分环节,要求:
(1)若0.5,对应最佳响应,问起搏器增益K应取多大。
(2)若期望心速为60次/min,并突然接通起搏器,问1s后实际心速为多少?瞬时的最大心速多大。
自动控制原理3
1. 如果被调量随着给定量的变化而变化,这种控制系统叫( )
A.恒值调节系统 B.随动系统 C.连续控制系统 D.数字控制系统
2. 与开环控制系统相比较,闭环控制系统通常对( )进行直接或间接地测量,通过反馈环节去影响控制信号。
A.输出量 B.输入量 C.扰动量 D.设定量
3. 直接对控制对象进行操作的元件称为( )
A.给定元件 B.放大元件 C.比较元件 D.执行元件
4. 某典型环节的传递函数是G?s1,则该环节是( ) Ts
A.比例环节 B.惯性环节 C.积分环节 D.微分环节
5. 已知系统的单位脉冲响应函数是y?t0.1t2,则系统的传递函数是( ) 0.20.10.10.2 B. C. D. 322ssss
6. 梅逊公式主要用来( )
A.判断稳定性 B.计算输入误差
C.求系统的传递函数 D.求系统的根轨迹
7. 已知二阶系统单位阶跃响应曲线呈现出等幅振荡,则其阻尼比可能为( )
A.0.6 B.0.707 C.0 D.1
8. 在系统对输入信号的时域响应中,其调整时间的长短是与( )指标密切相关。
A.允许的稳态误差 B.允许的超调量
C.允许的上升时间 D.允许的峰值时间
79. 设一阶系统的传递G(s)?,其阶跃响应曲线在t =0处的切线斜率为( ) s?2A.
A.7 B.2 C.7 D.1 22
10.若系统的传递函数在右半S平面上没有零点和极点,则该系统称作( )
A.非最小相位系统 B.最小相位系统 C.不稳定系统 D.振荡系统
11.一般为使系统有较好的稳定性,希望相位裕量?为( )
A.0~15? B.15?~30? C.30?~60? D.60?~90?
12.某系统的闭环传递函数为:GB?ss?2k,当k=( )时,闭环系统临s3?3s2?4s?2k
界稳定。
A.2 B.4 C.6 D.8
13.开环传递函数为G(s)H(s)?K,则实轴上的根轨迹为( ) S3(S?4)
A.(-4,∞) B.(-4,0) C.(-∞,-4) D.( 0,∞)
14.单位反馈系统开环传递函数为G?s4,当输入为单位斜坡时,其加速度s2(s2?3s?2)
误差为( )
A.0 B.0.25 C.4 D.?
15.系统的传递函数G?s5,其系统的增益和型次为 ( ) 2s(s?1)(s?4)
A.5,2 B.5/4,2 C.5,4 D.5/4,4
16.若已知某串联校正装置的传递函数为Gj(s)?s?12s?1,则它是一种( ) 10s?10.2s?1
A.相位滞后校正 B.相位超前校正 C.相位滞后—超前校正 D.反馈校正
的关系,通常是( ) 17.进行串联超前校正前的穿越频率?c与校正后的穿越频率?c
 B.c>c C.c 18.已知系统开环传递函数G(s)?,则与虚轴交点处的K*=( ) s(s?1)(s?2) A.0 B.2 C.4 D.6 19.某校正环节传递函数Gc(s)?100s?1,则其频率特性的奈氏图终点坐标为( ) 10s?1 A.(0,j0) B.(1,j0) C.(1,j1) D.(10,j0) 20.A、B是高阶系统的二个极点,一般当极点A距离虚轴比极点B距离虚轴大于( )时,分析系统时可忽略极点A。 A.5倍 B.4倍 C.3倍 D.2倍 21.对控制系统的首要要求是系统具有。 22.在驱动力矩一定的条件下,机电系统的转动惯量越小,其 23.某典型环节的传递函数是G(s)?1,则系统的时间常数是。 s?2 24.延迟环节不改变系统的幅频特性,仅使发生变化。 25.二阶系统当输入为单位斜坡函数时,其响应的稳态误差恒为。 26.反馈控制原理是 27.已知超前校正装置的传递函数为Gc(s)?2s?1,其最大超前角所对应的频率0.32s?1 m 28.在扰动作用点与偏差信号之间加上0。 29.超前校正主要是用于改善稳定性和。 30.一般讲系统的加速度误差指输入是 31.自动控制 32.传递函数 33.瞬态响应 34.最小相位传递函数 35.复现频率 36. 方块图变换要遵守什么原则,举例说明。 37.试说明延迟环节G(s)?es的频率特性,并画出其频率特性极坐标图。 38.如何减少系统的误差? 39.开环不稳定的系统,其闭环是否稳定?举例说明。 40. 高阶系统简化为低阶系统的合理方法是什么? 41.求如下方块图的传递函数。 43.设单位反馈开环传递函数为G(s)? 并计算此K值下的ts,tp,tr,Mp。 44.单位反馈开环传递函数为G(s)? K,求出闭环阻尼比为0.5时所对应的K值,s(5s?50)10(s?a), s(s?2)(s?10) (1)试确定使系统稳定的a值; (2)使系统特征值均落在S平面中Re1这条线左边的a值。 自动控制原理4 1. 系统和输入已知,求输出并对动态特性进行研究,称为( ) A.系统综合 B.系统辨识 C.系统分析 D.系统设计 2. 开环控制系统的的特征是没有( ) A.执行环节 B.给定环节 C.反馈环节 D.放大环节 3. 主要用来产生偏差的元件称为( ) A.比较元件 B.给定元件 C.反馈元件 D.放大元件 4. 某系统的传递函数是G?s1es,则该可看成由( )环节串联而成。 2s?1 A.比例、延时 B.惯性、导前 C.惯性、延时 D.惯性、比例 s2?2s?35. 已知F(s)? ,其原函数的终值f(t)?( ) 2ts(s?5s?4) A.0 B.∞ C.0.75 D.3 6. 在信号流图中,在支路上标明的是( ) A.输入 B.引出点 C.比较点 D.传递函数 7 .设一阶系统的传递函数是G?s3,且容许误差为2%,则其调整时间为( ) s?2 A.1 B.1.5 C.2 D.3 8. 惯性环节和积分环节的频率特性在( )上相等。 A.幅频特性的斜率 B.最小幅值 C.相位变化率 D.穿越频率 9. 若保持二阶系统的ζ不变,提高ωn,则可以( ) A.提高上升时间和峰值时间 B.减少上升时间和峰值时间 C.提高上升时间和调整时间 D.减少上升时间和超调量 10.二阶欠阻尼系统的有阻尼固有频率ωd、无阻尼固有频率ωn和谐振频率ωr比较( ) A.ωr>ωd >ωn B.ωr>ωn >ωd C.ωn >ωr>ωd D.ωn >ωd>ωr 11.设系统的特征方程为D?s3s4?10s3?5s2?s?2?0,则此系统中包含正实部特征的个数有( ) A.0 B.1 C.2 D.3 12.根据系统的特征方程D?s3s3?s2?3s?5?0,可以判断系统为( ) A.稳定 B.不稳定 C.临界稳定 D.稳定性不确定 13.某反馈系统的开环传递函数为:G?s(?2s?1),当( )时,闭环系统稳定。 2s(T1s?1) A.T12 B.T12 C.T12 D.任意T1和?2 14.单位反馈系统开环传递函数为G?s4,当输入为单位阶跃时,其位置误差为2s?3s?2 ( ) A.2 B.0.2 C.0.25 D.3 15.当输入为单位斜坡且系统为单位反馈时,对于II型系统其稳态误差为( ) A.0 B.0.1/k C.1/k D.? 16.若已知某串联校正装置的传递函数为Gc(s)?2,则它是一种( ) s A.相位滞后校正 B.相位超前校正 C.微分调节器 D.积分调节器 17.相位超前校正装置的奈氏曲线为( ) A.圆 B.上半圆 C.下半圆 D.45°弧线 18.在系统中串联PD调节器,以下那一种说法是错误的( ) A.是一种相位超前校正装置 B.能影响系统开环幅频特性的高频段 C.使系统的稳定性能得到改善 D.使系统的稳态精度得到改善 19.根轨迹渐近线与实轴的交点公式为( ) nm mn Pj Z i i A. j?1i?1 ZP j n?m B. i?1j?1 n?m mn nm Zi P j Pj i C. i?1j?1 Z n?m D. j?1i?1 n?m 20.直流伺服电动机—测速机机组(型号为70SZD01F24MB)实际的机电时间常数为(A.8.4 ms B.9.4 ms C.11.4 ms D.12.4 ms 21.根据采用的信号处理技术的不同,控制系统分为模拟控制系统和。 22.闭环控制系统中,真正对输出信号起控制作用的是。 23.控制系统线性化过程中,线性化的精度和系统变量的 24.描述系统的微分方程为d2x0?t?dt2?3dx0?t?dt 2xtxit,则频率特性 G(j?)?。 25.一般开环频率特性的低频段表征了闭环系统的性能。 26.二阶系统的传递函数G(s)=4/(s2+2s+4) ,其固有频率?n= 。 27.对单位反馈系统来讲,偏差信号和误差信号。 28.PID调节中的“P”指的是控制器。 29.二阶系统当共轭复数极点位于?45?线上时,对应的阻尼比为。 30.误差平方积分性能指标的特点是:。 31.最优滤波 32.积分环节 33.极坐标图 34.相位裕量 35.根轨迹的起始角 36. 简要论述自动控制理论的分类及其研究基础、研究的方法。 37.二阶系统的性能指标中,如要减小最大超调量,对其它性能有何影响? 38. 用文字表述系统稳定的充要条件。并举例说明。 39.在保证系统稳定的前提下,如何来减小由输入和干扰引起的误差? 40.根轨迹的渐近线如何确定? 41.建立图示系统的数学模型,并以传递函数形式表示。 11 ) 42.求如下方块图的传递函数。 44.已知单位反馈系统的开环传递函数Gk(s)? , s(s?1)(2s?1) (l)求使系统稳定的开环增益k的取值范围; (2)求k=1时的幅值裕量; (3)求k=1.2,输入x(t)=1+0.06 t时的系统的稳态误差值ess。 自动控制原理5 1. 随动系统对( )要求较高。 A.快速性 B.稳定性 C.准确性 D.振荡次数 2.“现代控制理论”的主要内容是以( )为基础,研究多输入、多输出等控制系统的分析 和设计问题。 A.传递函数模型 B.状态空间模型 C.复变函数模型 D.线性空间模型 3. 主要用于稳定控制系统,提高性能的元件称为( ) A.比较元件 B.给定元件 C.反馈元件 D.校正元件 4. 某环节的传递函数是G?s3s?7? 1 ,则该环节可看成由( )环节串联而组成。 s?5 A.比例、积分、滞后 B.比例、惯性、微分 C.比例、微分、滞后 D.比例、积分、微分 12 s2?2s?3 5. 已知F(s)? ,其原函数的终值f(t)?( ) 2 ts(s?5s?4) A.0 B.∞ C.0.75 D.3 6. 已知系统的单位阶跃响应函数是x0?t2(1?eA. 0.5t ),则系统的传递函数是( ) 2 B.21 C.1 D. 0.5s?10.5s?12s?12s?1 7. 在信号流图中,在支路上标明的是( ) A.输入 B.引出点 C.比较点 D.传递函数 8. 已知系统的单位斜坡响应函数是x0?tt?0.5?0.5e?2t,则系统的稳态误差是( ) A.0.5 B.1 C.1.5 D.2 9. 若二阶系统的调整时间长,则说明( ) A.系统响应快 B.系统响应慢 C.系统的稳定性差 D.系统的精度差 10.某环节的传递函数为 K ,它的对数幅频率特性L(?)随K值增加而( ) Ts?1 A.上移 B.下移 C.左移 D.右移 11.设积分环节的传递函数为G(s)? K ,则其频率特性幅值A(?)=( ) s K1K1A. B.2 C. D.2  12.根据系统的特征方程D?s3s3?s2?3s?5?0,可以判断系统为( ) A.稳定 B.不稳定 C.临界稳定 D.稳定性不确定 13.二阶系统的传递函数G?s 1 ,其阻尼比ζ是( ) 4s2?2s?1 A.0.5 B.1 C.2 D.4 14.系统稳定的充分必要条件是其特征方程式的所有根均在根平面的( ) A.右半部分 B.左半部分 C.实轴上 D.虚轴上 15.一闭环系统的开环传递函数为G(s)? 4(s?3) ,则该系统为( ) s(2s?3)(s?4) A.0型系统,开环放大系数K为2 B.I型系统,开环放大系数K为2 C.I型系统,开环放大系数K为1 D.0型系统,开环放大系数K为1 之间的关系,通常16.进行串联滞后校正后,校正前的穿越频率?c与校正后的穿越频率?c 是( )  B.c>c C.c A.是一种相位超前校正装置 B.能影响系统开环幅频特性的高频段 13 C.使系统的稳定性能得到改善 D.使系统的稳态精度得到改善 18.滞后校正装置的最大滞后相位趋近( ) A.-45° B.45° C.-90° D.90° 19.实轴上分离点的分离角恒为( ) A.?45? B.?60? C.?90? D.?120? 20.在电压—位置随动系统的前向通道中加入( )校正,使系统成为II型系统,可以消除常值干扰力矩带来的静态误差。 A.比例微分 B.比例积分 C.积分微分 D.微分积分 21.闭环控制系统中,真正对输出信号起控制作用的是。 22.系统的传递函数的分布决定系统的动态特性。 23.二阶系统的传递函数G(s)=4/(s2+2s+4) ,其固有频率?n= 。 24.用频率法研究控制系统时,采用的图示法分为极坐标图示法和__图示法。 25.描述系统的微分方程为d2x0?t?dxdt 2 30tdt2xtxit,则频率特性 G(j?)? 26.乃氏图中当ω等于剪切频率时,相频特性距-π线的相位差叫。 27. 28.滞后校正是利用校正后的作用使系统稳定的。 29.二阶系统当共轭复数极点位于?45?线上时,对应的阻尼比为。 30.远离虚轴的闭环极点对的影响很小。 31.延迟时间 32.比例环节 33.稳态响应 34.闭环截止频率 35.位置误差 36.对于受控机械对象,为得到良好的闭环机电性能,应该注意哪些方面? 37.评价控制系统的优劣的时域性能指标常用的有哪些?每个指标的含义和作用是什么?38.写出画伯德图的步骤。 39.系统的误差大小和系统中的积分环节多少有何关系?举例说明。 40.为什么串联滞后校正可以适当提高开环增益,而串联超前校正则不能? 41.一反馈控制系统如图所示,求:当?=0.7时,a=? 14 42. 43.某单位反馈开环系统的传递函数为G(s)?(1)画出系统开环幅频Bode图。 (2)计算相位裕量。 44.求出下列系统的跟随稳态误差essr和扰动稳态误差essd。 2000 , s(s?2)(s?20) 一、单项选择题(每小题 1 分,共 20 分) 1 .C 2 .A 3 .C 4 .A 5 .B 6 .C 7 .B 8 .B 9 .A 10.D 11.A 12.C 13.C 14.C 15.D 16.B 17.A 18.B 19.C 20.B 二、填空题(每空 1 分, 共 10 分) 21.反馈控制 22.传递函数 23.时间常数T (或常量) 24.偏移程度 25.开环幅频特性 26.阶跃信号 27.相位 28.?45? 29.比例 30.远 三、名词解释(每小题 3 分, 共 15 分) 31.指动态过程的振荡倾向和系统能够恢复平稳状态的能力。 i(t)) 32.输出变量正比于输入变量的微分(或x0(t)?kx 33.系统响应曲线达到并一直保持在允许衰减范围内的最短时间 34.当乃氏图随?增加逆时针从第二象限越过负实轴向第三象限去时,叫正穿越。 35.指当系统某个参数(如开环增益K)由零到无穷大变化时,闭环特征根在s平面上移动的轨迹。 四、简答题(每小题 5 分, 共 25 分) 36.传递函数是线性定常系统输出的拉氏变换与输入的拉氏变换之比,它通常不能表明系统的物理特性和物理结构,因此说物理性质不同的系统,其传递函数可能相同。(3分)举例说明(2分)略,答案不唯一。 37.常用的方法(两方法选1即可):其单位阶跃响应曲线在 0.632(2.5分)稳态值处,经过的时间t=T(2.5分);或在 t=0处曲线斜率 k=1/T,ts=(3~4)T 38.高阶系统中距离虚轴最近的极点,其附近没有零点,它的实部比其它极点的实部的1/5还小,称其为主导极点。(2分)将高阶系统的主导极点分析出来,利用主导极点来分析系统,相当于降低了系统的阶数,给分析带来方便。(2分) 举例说明(1分)略,答案不唯一。 39.偏差信号:输入信号与反馈信号之差;(1.5分)误差信号:希望的输出信号与实际的输出信号之差。(1.5分) 两者间的关系:sE?s?H?s?,当H?s1时,sE?s?(2分) 40.根轨迹S平面止的分支数等于闭环特征方程的阶数,也就是分支数与闭环极点的数目相同(3分)。举例说明(2分)略,答案不唯一。 五、计算题(第41、42题每小题5分,第43 、44题每小题10分,共 30 分) 41.解: G(s)? 42.解: G1G2G3?G1G4 (5分) 1?G1G2H1?G2G3H2?G1G2G3H3?G1G2H3?G4H2 0(t)k1x0(t)k2[xa(t)x0(t)]DsX0(s)k1X0(s)k2[Xa(s)X0(s)]Dx a(t)k2[xa(t)x0(t)]fi(t)Ms2Xa(s)k2[Xa(s)X0(s)]Fi(s)Mx (2.5分) G?s 43.解: k2 (2.5分) mDs3?mk1?k2s2?k2Ds?k1k2 G(s)? Y(s)k 2 (2分) Xi(s)s?k1ks?k 12 Mp?e 6?5 ?0.20.456 (2分) 5 tp? n 2 2 (2分) 2 n8.06kn49.850 (2分) k1?44.解: 2n 0.13 (2分) k 由图知该系统的开环传递函数为 k1?22 (2分) sTs?2?Ts?1 1 其中T= (1分) 3 由低频渐近线与横轴交点为10,得k?10 (2分) 修正量L20log(2?)?10,得0.158 (2分) 故所求开环传递函数为 10 1ss20.105s19 (3分) 或记为 k (k?1022 s(Ts?2?Ts?1) T? 13 0.158) 自动控制原理2试题答案及评分参考 一、单项选择题(每小题 1 分,共 20 分) 1 .A 2 .B 3 .D 4 .B 5 .C 6 .A 7 .C 8 .B 9 .D 10.D 11.C 12.C 13.C 14.D 15.A 16.A 17.D 18.D 19.B 20.A 二、填空题(每空 1 分, 共 10 分) 21.传递函数 22.越高 23.0.5 24.相频特性 25.幅值裕量 26.匀加速度 27.小 28.串联校正 29.1.25 30.零点和极点 三、名词解释(每小题 3 分, 共 15 分) 31.如果一物理系统在信号传递过程中的动态特性能用数学表达式描述出来,该数学表达式就称为数学模型。 32.用于测量被调量或输出量,产生主反馈信号的元件。 33.二阶欠阻尼系统在单位阶跃输入时,响应曲线的最大峰值与稳态值的差。 34.系统对正弦输入的稳态响应。 35.在频率?为相位交界频率?g时,开环幅频特性G(j?g)H(j?g)的倒数称为系统的幅值裕度,Kg? 1 G(j?g)H(j?g) 。 四、简答题(每小题 5 分, 共 25 分) 36.开环控制系统:是没有输出反馈的一类控制系统。其结构简单,价格低,易维修。精度低、易受干扰。(2.5分) 闭环控制系统:又称为反馈控制系统,其结构复杂,价格高,不易维修。但精度高,抗干扰能力强,动态特性好。(2.5分) 37.答案不唯一。例如:即在系统的输入端加入一定幅值的正弦信号,系统稳定后的输入也是正弦信号,(2.5分)记录不同频率的输入、输出的幅值和相位,即可求得系统的频率特性。(2.5分) 38.0型系统的幅频特性曲线的首段高度为定值,20lgK0(2分) 1型系统的首段-20dB/dec,斜率线或其延长线与横轴的交点坐标为ω1=K1(1.5分) 2型系统的首段-40dB/dec,斜率线或其延长线与横轴的交点坐标为ω1=K2(1.5分) 39.根轨迹与虚轴相交,表示闭环极点中有极点位于虚轴上,即闭环特征方程有纯虚根,系统处于临界稳定状态,可利用此特性求解稳定临界值。(3分) 举例,答案不唯一。如求开环传递函数G(s)=K/(s(s+1)(s+2))的系统稳定时的K值。根据其根轨迹与虚轴相交的交点,得到0 2)如要求系统快速性好,则闭环极点越是远离虚轴;如要求系统平稳性好,则复数极点最好设置在s平面中与负实轴成?45?夹角线以内;(1分) 3)离虚轴的闭环极点对瞬态响应影响很小,可忽略不计;(1分) 26 4)要求系统动态过程消失速度快,则应使闭环极点间的间距大,零点靠近极点。即存5)在偶极子;(1分) 5)如有主导极点的话,可利用主导极点来估算系统的性能指标。(1分) 五、计算题(第41、42题每小题5分,第43 、44题每小题10分,共 30 分) 41.解 G1(s)G2(s)G3(s)C(s) (5分) ? R(s)1?G3(s)H3(s)?G2(s)G3(s)H2(s)?G1(s)G2(s)G3(s)H1(s) 42.解: 0(t)Dy0(t)(k1k2)y0(t)Fi(t)my (ms?Ds?k1?k2)Y0(s)?Fi(s) G(s)?43.解: 系统有一比例环节:K?10 积分环节: 2 (2.5分) 1 (2.5分) 2 ms?Ds?k1?k2 20log10?20 (1.5分) 1 (1分) s1 惯性环节: 转折频率为1/T=10 (1.5分) 0.1s?1 ω 0 -45-900 -1350 -1801.5分) 44.解: K1K (1)传递函数 G?s (4分) 1s2?s? 0.05s?1s0.050.05 得?n? K1, (2分) 0.050.005?2?n 27 当0.5时,K=20,ωn=20 (1分) (2)由以上参数分析得到其响应公式: C(t)?1nt 2 sinn2*t?arctg? 12   得C(1)=1.0 次每秒,即60次每分钟, (1分) 当0.5时,超调量?%?16.3%,最大心速为69.78次。 (2分) 自动控制原理3试题答案及评分参考 一、单项选择题(每小题 1 分,共 20 分) 1 .B 2 .B 3 .D 4 .C 5 .A 6 .C 7 .C 8 .A 9 .B 10.B 11.C 12.C 13.C 14.A 15.B 16.C 17.B 18.D 19.D 20.A 二、填空题(每空 1 分, 共 10 分) 21.稳定性 22.加速性能 23.0.5 24.相频特性 25.2ζ/?n (或常量) 26.检测偏差并纠正偏差的 27.1.25 28.积分环节 29.快速性 30.静态位置误差系数 三、名词解释(每小题 3 分, 共 15 分) 31.在没有人直接参与的情况下,使被控对象的某些物理量准确地按照预期规律变化。 32.传递函数的定义是对于线性定常系统,在零初始条件下,系统输出量的拉氏变换与输入的拉氏变换之比。 33.系统在某一输入信号的作用下其输出量从初始状态到稳定状态的响应过程。 34.在右半s平面上无极点和零点的传递函数称为最小相位传递函数。 35.在允许误差范围内的最高工作频率。 四、简答题(每小题 5 分, 共 25 分) 36. 1)各前向通路传递函数的乘积保持不变。(2分) 2)各回路传递函数的乘积保持不变。 (2分) 举例说明(1分)略,答案不唯一。 37.其极坐标图为单位圆,随着?从0 变化,其极坐标图顺时针沿单位圆转无穷多圈。(2.5分)图略。(2.5分) 38.可采用以下途径: 1)提高反馈通道的精度,避免引入干扰;(1.5分) 2)在保证系统稳定的前提下,对于输入引起的误差,可通过增大系统开环放大倍数和提高系统型次减小。对于干扰引起的误差,可通过在系统前向通道干扰点前加积分增大放大倍数来减小;(2分) 3)采用复合控制对误差进行补偿。(1.5分) 39.开环不稳定的系统,其闭环只要满足稳定性条件,就是稳定的,否则就是不稳定的。(3分)举例说明答案不唯一略。(2分) 40.保留主导极点即距虚轴最近的闭环极点,忽略离虚轴较远的极点。一般该极点大于其它极点5倍以上的距离;(2.5分)如果分子分母中具有负实部的零、极点在数值上相近,则可将该零、极点一起小调,称为偶极子相消(2.5分) 五、计算题(第41、42题每小题5分,第43 、44题每小题10分,共 30 分) 41.解: 28 G总? 42.解: G3G4?G1G2G3?G2G3G4H (5分) 1?G2H?G1G2G3 (t)ky(t)Fi(t)myk1k2 (2.5分) k k1?k2 G(s)? Y(s) F?k1?k22 i(s)k1?k2ms?k1?k2 43.解: K G?ss(5s?50)KK51?K?5s2?50s?K?s2 10sK/5 s(5s?50) nK/5=10, 10 2?=0.5,得K=500 n tarccos?r? =0.24 ?n-?2 M2 P?e =0.16 t?p? =0.36 ?2 n-? t3 s? =0.6 n 44.解: (1)得特征方程为:s3?12s2 30s10a0 S3 1 30 S2 12 10a S1 (360-10a)/12 S0 10a 得:(360-10a)>0,10a>0,从而0< a<36。 (2)将d-1=s代入上式,得d3 9d2 9d10a190 d3 1 9 d2 9 10a-19 d1 (81-10a+19)/9 d0 10a-19 2.5分) (2分) (2分) (2分) (2分) (1分) (1分) (2分) (3分) (2分) 29 ( 同理得到:0.9< a<10 (3分) 自动控制原理4试题答案及评分参考 一、单项选择题(每小题 1 分,共 20 分) 1 .C 2 .C 3 .A 4 .C 5 .C 6 .D 7 .C 8 .A 9 .B 10.D 11.C 12.B 13.B 14.B 15.A 16.D 17.B 18.D 19.D 20.D 二、填空题(每空 1 分, 共 10 分) 21.数字控制系统 22.偏差信号 23.偏移程度 24. 1 22?3j? 25.稳态 26.2 27.相同 28.比例 29.0.707 30.重视大的误差,忽略小的误差 三、名词解释(每小题 3 分, 共 15 分) 31.当输出已知时,确定系统,以识别输入或输出的有关信息称为最优滤波 32.输出变量正比于输入变量的积分(或x0(t)?kxi(t)dt) 33.是反映频率响应的几何表示。 34.在?为剪切频率?c时,相频特性?G?j?g?H?j?g?距-180?线的相位差? 称为相位裕量。 35.指起于开环极点的根轨迹在起点处的切线与水平线正方向的夹角。 四、简答题(每小题 5 分, 共 25 分) 36.自动控制理论分为“经典控制理论”和“现代控制理论”,(1分)“经典控制理论”以传递函数为基础(1分),以频率法和根轨迹法为基本方法,(2分)“现代控制理论”以状态空间法为基础,(1分)。 37.要减小最大超调量就要增大阻尼比(2分)。会引起上升时间、峰值时间变大,影响系统的快速性。(3分) 38.系统特征方程式的所有根均为负实数或具有负的实部。(3分) 或:特征方程的根均在根平面(复平面、s平面)的左半部。 或:系统的极点位于根平面(复平面、s平面)的左半部 举例说明(2分)略,答案不唯一 39.对于输入引起的误差,可通过增大系统开环放大倍数和提高系统型次减小。(2.5分) 对于干扰引起的误差,可通过在系统前向通道干扰点前加积分增大放大倍数来减小(2.5分)。 40.如果开环零点数m小于开环极极点数n,则(n-m)趋向无穷根轨迹的方位可由渐进线决定。(2.5分)渐进线与实轴的交点和倾角为:( 2.5分) 五、计算题(第41、42题每小题5分,第43 、44题每小题10分,共 30 分) 41.解: 30 (t)k1y0(t)k2y0(t)Fi(t)my0 (ms2?k1?D1s? (2.5分) k2D2s)Y0(s)?Fi(s)k2?D2s G(s)? 42.解: k2?D2s (2.5分) mD2s3?mk2?D1D2s2?k1D2?k2D1?k2D2s?k1k2 G总?G1G2G3?G1G3G4?G1G2G3G4H (5分) 1?G2H?G1G2G3?G1G3G4?G1G2G3G4H 43.解: 系统有一比例环节:K=10 20log10=20 (1.5分) 积分环节:1/S (1分) 惯性环节:1/(S+1) 转折频率为1/T=1 (1.5分) 40 20 0 -20 -40 0 -45 -900 -1350 -1800 1.5分) 44.解: 1)系统的特征方程为: D(s)?2s3?3s2?s?k?0 (2分) 由劳斯阵列得:0< k<1.5 (2分) 2)由?()90arctanarctan2180? 得: Kg?0.5 (2分) 1?1 0.5?1.5?3?0.67 (2分) 14122 3)ess?limsE(s)?limss?0s?0s(s?1)(2s?1)?10.06?0.06?0.05 (2分) 2s(s?1)(2s?1)?1.2?ss?1.2 31 286134801控制工程基础5试题答案及评分参考 一、单项选择题(每小题 1 分,共 20 分) 1 .A 2 .B 3 .D 4 .B 5 .C 6 .B 7.D 8 .A 9 .B 10.A 11.A 12.B 13.C 14.B 15.C 16.C 17.D 18.A 19.C 20.B 二、填空题(每空 1 分, 共 10 分) 21.偏差信号 22.零极点 23.2 24.对数坐标 25.1 223j? 26.相位裕量 27.单位反馈 28.幅值衰减 29.0.707 30.瞬态响应 三、名词解释(每小题 3 分, 共 15 分) 31.响应曲线从零上升到稳态值的50%所需要的时间。 32.在时间域里,输入函数成比例,即:x0?tkxi?t? 33.时间t趋于无穷大时,系统输出的状态,称为系统的的稳态响应。 34.响应从稳态值的10%上升到稳态值的90%所需的时间。 35.指输入时阶跃信号时所引起的输出位置上的误差。 四、简答题(每小题 5 分, 共 25 分) 36.较高的谐振频率(1.5分),适当的阻尼(1.5分),高刚度(1分),较低的转动惯量(1分)。 37.最大超调量:单位阶跃输入时,响应曲线的最大峰值与稳态值之差;反映相对稳定性;(1 分) 调整时间:响应曲线达到并一直保持在允许误差范围内的最短时间;反映快速性;(1分) 峰值时间:响应曲线从零时刻到达峰值的时间。反映快速性;(1分) 上升时间:响应曲线从零时刻到首次到达稳态值的时间。反映快速性;(1分) 振荡次数:在调整时间内响应曲线振荡的次数。反映相对稳定性。(1分) 38. 1)将系统频率特性化为典型环节频率特性的乘积。(2分) 2)根据组成系统的各典型环节确定转角频率及相应斜率,并画近似幅频折线和相频曲线(2分) 3)必要时对近似曲线做适当修正。(1分) 39.由静态误差系数分析可知,在输入相同的情况下,系统的积分环节越多,型次越高,稳态误差越小(3分)。举例说明(2分)略,答案不唯一 40.串联滞后校正并没有改变原系统最低频段的特性,故对系统的稳态精度不起破坏作用。相反,还允许适当提高开环增益,改善系统的稳态精度(2.5分);而串联超前校正一般不改善原系统的低频特性,如果进一步提高开环增益,使其频率特性曲线的低频段上移,则系统的平稳性将下降。(2.5分) 五、计算题(第41、42题每小题5分,第43、44题每小题10分,共 30 分) 41.解: G(s)?9 ?n?3 (2分) 2s?(2?9a)s?9 当0.7时a?0.24 (3分) 32 42.解: (t)Dy0(t)ky0(t)Fi(t)my0 (ms?Ds?k)Y0(s)?Fi(s)2 (2.5分) G(s)?Y0(s)1? (2.5分) 2Fi(s)ms?Ds?k 43.解: (5分) 2)相位裕量: (5分) c10s1180(90arctan0.510arctan0.0510)15.26 44.解: v?1) e?lims( s?0?KR(s)?lims?0(s20?10 ssrs)?0.5 (5分) es(v1?1) ssd?lims?0?KD(s)?lim(s?4)?0.4 1s?010s (5分)
