
一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)
1、计算30的结果是( )
A、3 B、30 C、1 D、0
2、如图,∠1+∠2等于( )
A、60° B、90° C、110° D、180°
3、下列分解因式正确的是( )
A、﹣a+a3=﹣a(1+a2) B、2a﹣4b+2=2(a﹣2b)
C、a2﹣4=(a﹣2)2 D、a2﹣2a+1=(a﹣1)2
4、下列运算中,正确的是( )
A、2x﹣x=1 B、x+x4=x5 C、(﹣2x)3=﹣6x3 D、x2y÷y=x2
5、一次函数y=6x+1的图象不经过( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
6、将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的( )
A、面CDHE B、面BCEF C、面ABFG D、面ADHG
7、甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S甲2=27,S乙2=19.6,S丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选( )
A、甲团 B、乙团 C、丙团 D、甲或乙团
8、一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=﹣5(t﹣1)2+6,则小球距离地面的最大高度是( )
A、1米 B、5米 C、6米 D、7米
9、如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在 AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( )
A、 B、2 C、3 D、4
10、已知三角形三边长分别为2,x,13,若x为正整数 则这样的三角形个数为( )
A、2 B、3 C、5 D、13
11、如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,则y与x的函数图象大致是( )
A、 B、
C、 D、
12、根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论:
①x<0 时, ②△OPQ的面积为定值.③x>0时,y随x的增大而增大.④MQ=2PM.⑤∠POQ可以等于90°.其中正确结论是( )
A、①②④ B、②④⑤ C、③④⑤ D、②③⑤
二、填空题(共6小题,每小题3分,满分18分)
13、,π,﹣4,0这四个数中,最大的数是 .
14、如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为﹣4和1,则BC= .
15、若|x﹣3|+|y+2|=0,则x+y的值为 .
16、如图,点0为优弧所在圆的圆心,∠AOC=108°,点D在AB延长线上,BD=BC,则∠D= .
17、如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得到图2,则阴影部分的周长为 2 .
18、如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.
如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.
若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是 3 .
三、解答题(共8小题,满分72分)
19、已知是关于x,y的二元一次方程的解,求(a+1)(a﹣1)+7的值.
20、如图,在6×8网格图中,每个小正方形边长均为1,点0和△ABC的顶点均为小正方形的顶点.
(1)以O为位似中心,在网络图中作△A′B′C′,使△AA′B′C′和△ABC位似,且位似比为 1:2;
(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)
21、如图,一转盘被等分成三个扇形,上面分别标有﹣1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形>.
(1)若小静转动转盘一次,求得到负数的概率;
(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率.
22、甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙 共同整理20分钟后,乙需再单独整理20分钟才能完工.
(1)问乙单独整理多少分钟完工?
(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?
23、如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.
(1)求证:①DE=DG; ②DE⊥DG
(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);
(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想:
(4)当时,请直接写出的值.
24、已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次 性由A地运往B地.受各种因素,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.
现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
货运收费项目及收费标准表
| 运输工具 | 运输费单价 元/(吨•千米) | 冷藏费单价 元/(吨•时) | 固定费用 元/次 |
| 汽车 | 2 | 5 | 200 |
| 火车 | 1.6 | 5 | 2280 |
(1)汽车的速度为 千米/时,火车的速度为 千米/时:
(2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与 x的函数关系式(不必写出x的取值范围),及x为何值时y汽>y火(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?
25、如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.
思考
如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.
当α= 90 度时,点P到CD的距离最小,最小值为 2 .
探究一
在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO= 30 度,此时点N到CD的距离是 2 .
探究二
将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.
(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;
(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数椐:sin49°=,cos41°=,tan37°=.)
26、如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点
为 A (1,0),B (1,﹣5),D (4,0).
(1)求c,b (用含t的代数式表示):
(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积S与t的函数关系式,并求t为何值时,;
(3)在矩形ABCD的内部(不含边界),把横、纵 坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.
