
学号 姓名
2016新课标1卷
(5)已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是
(A)(–1,3) (B)(–1,) (C)(0,3) (D)(0,)
(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为
(A)2 (B)4 (C)6 (D)8
20. (本小题满分12分)
设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(I)证明为定值,并写出点E的轨迹方程;
()设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
2016新课标2卷
(4)圆的圆心到直线的距离为1,则a=
(A) (B) (C) (D)2
(11)已知,是双曲线E:的左,右焦点,点M在E上,与轴垂直,sin ,则E的离心率为
(A) (B) (C) (D)2
(20)(本小题满分12分)
已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为的直线交E于A,M两点,点N在E上,MA⊥NA.
()当,时,求△AMN的面积;
()当时,求k的取值范围.
2015新课标1卷
(5)已知M(x0,y0)是双曲线C: 上的一点,F1、F2是C上的两个焦点,若<0,则y0的取值范围是
(A)(-,) (B)(-,)
(C)(,) (D)(,)
(14)一个圆经过椭圆的三个顶点,且圆心在x轴上,则该圆的标准方程为 .
(20)(本小题满分12分)
在直角坐标系xoy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点,
(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.
2015新课标2卷
7.过三点,,的圆交y轴于M,N两点,则( )
A.2 B.8 C.4 D.10
11.已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为( )
A. B. C. D.
20.(本题满分12分)
已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.
(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;
(Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.
2014新课标1卷
4.已知是双曲线:的一个焦点,则点到的一条渐近线的距离为. .3 . .
10.已知抛物线:的焦点为,准线为,是上一点,是直线与的一个焦点,若,则=
. . .3 .2
20. (本小题满分12分) 已知点(0,-2),椭圆:的离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.
(I)求的方程;
(Ⅱ)设过点的直线与相交于两点,当的面积最大时,求的方程.
2014新课标2卷
10.设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )
A. B. C. D.
16.设点M(,1),若在圆O:上存在点N,使得zxxk∠OMN=45°,则的取值范围是________.
20. (本小题满分12分)
设,分别是椭圆C:的左,右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.
(Ⅰ)若直线MN的斜率为,求C的离心率;
(Ⅱ)若直线MN在y轴上的截距为2,且,求a,b.
2013新课标1卷
4.(2013课标全国Ⅰ,理4)已知双曲线C: (a>0,b>0)的离心率为,则C的渐近线方程为( ).
A.y= B.y=
C.y= D.y=±x
10.(2013课标全国Ⅰ,理10)已知椭圆E: (a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为( ).
A. B.
C. D.
20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程;
(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
2013新课标2卷
11.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).
A.y2=4x或y2=8x B.y2=2x或y2=8x
C.y2=4x或y2=16x D.y2=2x或y2=16x
12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).
A.(0,1) B. C. D.
20.(2013课标全国Ⅱ,理20)(本小题满分12分)平面直角坐标系xOy中,过椭圆M: (a>b>0)右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为.
(1)求M的方程;
(2)C,D为M上两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.
解答题参
2016年1卷
20.(本小题满分12分)
解:(Ⅰ)因为,,故,
所以,故.
又圆的标准方程为,从而,所以.
由题设得,,,由椭圆定义可得点的轨迹方程为:
().
(Ⅱ)当与轴不垂直时,设的方程为,,.
由得.
则,.
所以.
过点且与垂直的直线:,到的距离为,所以
.故四边形的面积
.
可得当与轴不垂直时,四边形面积的取值范围为.
当与轴垂直时,其方程为,,,四边形的面积为12.
综上,四边形面积的取值范围为.
2016年2卷
【解析】 ⑴当时,椭圆E的方程为,A点坐标为,
则直线AM的方程为.
联立并整理得,
解得或,则
因为,所以
因为,,
所以,整理得,
无实根,所以.
所以的面积为.
⑵直线AM的方程为,
联立并整理得,
解得或,
所以
所以
因为
所以,整理得,.
因为椭圆E的焦点在x轴,所以,即,整理得
解得.
2015年1卷
(20)解:
(I)有题设可得又
处的导数值为,C在点出的切线方程为
,即.
股所求切线方程为
(I)存在符合题意的点,证明如下:
设P(0,b)为符合题意的点,M(x,y),N(x,y)直线PM,PN的斜率分别为
故
从而
当b=-a时,有
2015年2卷
20. 试题解析:(Ⅰ)设直线,,,.
将代入得,故,
.于是直线的斜率,即.所以直线的斜率与的斜率的乘积为定值.
(Ⅱ)四边形能为平行四边形.
因为直线过点,所以不过原点且与有两个交点的充要条件是,.
由(Ⅰ)得的方程为.设点的横坐标为.由得,即.将点的坐标代入直线的方程得,因此.四边形为平行四边形当且仅当线段与线段互相平分,即.于是
.解得,.因为,,,所以当的斜率为
或时,四边形为平行四边形.
2014年1卷
20.【解析】(Ⅰ) 设 ,由条件知,得 又,
所以a=2 , ,故的方程. ……….6分
(Ⅱ)依题意当轴不合题意,故设直线l:,设
将代入,得,
当,即时,
从而
又点O到直线PQ的距离,所以OPQ的面积,
设,则,,
当且仅当,时等号成立,且满足,所以当OPQ的面积最大时,的方程为: 或. …………………………12分
2014年2卷
(20)
解:(I)根据及题设知
将代入,解得(舍去)
故C的离心率为.
(Ⅱ)由题意,原点为的中点,∥轴,所以直线与轴的交点是线段的中点,故,即
①
由得。
设,由题意知,则
,即
代入C的方程,得。
将①及代入②得
解得,
故.
2013年1卷
解:由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.
设圆P的圆心为P(x,y),半径为R.
(1)因为圆P与圆M外切并且与圆N内切,
所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.
由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为(x≠-2).
(2)对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,
所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2.
所以当圆P的半径最长时,其方程为(x-2)2+y2=4.
若l的倾斜角为90°,则l与y轴重合,可得|AB|=.
若l的倾斜角不为90°,由r1≠R知l不平行于x轴,设l与x轴的交点为Q,则,可求得Q(-4,0),所以可设l:y=k(x+4).
由l与圆M相切得,
解得k=.
当k=时,将代入,
并整理得7x2+8x-8=0,
解得x1,2=.
所以|AB|=.
当时,由图形的对称性可知|AB|=.
综上,|AB|=或|AB|=.
2013年2卷
20.
解:(1)设A(x1,y1),B(x2,y2),P(x0,y0),
则,,,
由此可得.
因为x1+x2=2x0,y1+y2=2y0,,
所以a2=2b2.
又由题意知,M的右焦点为(,0),故a2-b2=3.
因此a2=6,b2=3.
所以M的方程为.
(2)由
解得或
因此|AB|=.
由题意可设直线CD的方程为
y=,
设C(x3,y3),D(x4,y4).
由得3x2+4nx+2n2-6=0.
于是x3,4=.
因为直线CD的斜率为1,
所以|CD|=.
由已知,四边形ACBD的面积.
当n=0时,S取得最大值,最大值为.
所以四边形ACBD面积的最大值为.
