最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

永磁同步电机最优直接转矩控制_杨建飞

来源:动视网 责编:小OO 时间:2025-09-26 18:07:37
文档

永磁同步电机最优直接转矩控制_杨建飞

第31卷第27期中国电机工程学报Vol.31No.27Sep.25,20112011年9月25日ProceedingsoftheCSEE©2011Chin.Soc.forElec.Eng.109文章编号:0258-8013(2011)27-0109-07中图分类号:TM761文献标志码:A学科分类号:470·40永磁同步电机最优直接转矩控制杨建飞,胡育文(南京航空航天大学航空电源航空科技重点实验室,江苏省南京市210016)OptimalDirectTorqueControlofPermane
推荐度:
导读第31卷第27期中国电机工程学报Vol.31No.27Sep.25,20112011年9月25日ProceedingsoftheCSEE©2011Chin.Soc.forElec.Eng.109文章编号:0258-8013(2011)27-0109-07中图分类号:TM761文献标志码:A学科分类号:470·40永磁同步电机最优直接转矩控制杨建飞,胡育文(南京航空航天大学航空电源航空科技重点实验室,江苏省南京市210016)OptimalDirectTorqueControlofPermane
第31卷第27期中国电机工程学报V ol.31 No.27 Sep.25, 2011

2011年9月25日Proceedings of the CSEE ©2011 Chin.Soc.for Elec.Eng. 109 文章编号:0258-8013 (2011) 27-0109-07 中图分类号:TM 761 文献标志码:A 学科分类号:470·40

永磁同步电机最优直接转矩控制

杨建飞,胡育文

(南京航空航天大学航空电源航空科技重点实验室,江苏省南京市 210016) Optimal Direct Torque Control of Permanent Magnet Synchronous Motor

YANG Jianfei, HU Yuwen

(Aero-power Sci-tech Center, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu Province, China)

ABSTRACT: The amplitude of stator flux and torque angle in permanent magnet synchronous motor (PMSM) are controllable, the implementation method of direct torque control in PMSM is not unique. A new torque control method was presented according to the characteristic that the amplitude of stator flux linkage and torque angle are all controllable. The amplitude of the stator flux linkage and the torque angle were controlled synthetically. The optimal voltage vector was selected according to the torque requirement directly and the stator flux linkage control loop in traditional control method was eliminated in the proposed torque control method. The validity of the theory analysis and the feasibility of the toque control method are verified by the experiment results.

KEY WORDS: permanent magnet synchronous motor (PMSM); direct torque control (DTC); stator flux; torque angle

摘要:永磁同步电机转矩中定子磁链幅值和转矩角均为可控

变量,直接转矩控制的实现方法不唯一。根据永磁同步电机

定子磁链和转矩角均可控的特点提出了一种最优直接转矩

控制方法。该方法不要求保持定子磁链幅值恒定,直接以转

矩为最终控制目标选择最优电压矢量实现对电机转矩的直

接控制,省去了传统直接转矩控制方法中的磁链环。实验结

果验证了理论分析的正确性和转矩控制方法的可行性。

关键词:永磁同步电机;直接转矩控制;定子磁链;转矩角

0 引言

传统永磁同步电机(permanent magnet synchronous motor,PMSM)直接转矩控制(direct torque control,DTC)通过保持定子磁链幅值恒定,迅速改变转矩角,实现对电机转矩的有效控制,该

基金项目:国家自然科学基金项目(50877035)。

Project Supported by National Natural Science Foundation of China (50877035).控制方案于1997年被提出后得到了成功应用[1],引起了国内外学者的广泛关注,成为永磁同步电机高性能控制领域的热点研究问题[2-13]。迄今为止关于永磁同步电机直接转矩控制方面的研究,都是在保持定子磁链恒定,通过改变转矩角实现对转矩的控制这一思路下展开的。永磁同步电机的转矩取决于定子磁链、转子磁链以及二者之间的转矩角,其中定子磁链和转矩角均为可控变量,因此,实现永磁同步电机高性能转矩控制的方法并不唯一,除了传统的转矩控制方法之外,还可以有其他的实现方案。

本文从对转矩控制思想的优化出发,分析了永磁同步电机转矩变化规律,提出了一种新的转矩控制方法,该方法从转矩控制的核心思想和电压矢量的选取原则2个角度对传统DTC方法进行优化和改进,电机运行中不要求保持定子磁链幅值恒定,省去了传统直接转矩控制中的磁链控制环,为便于后续分析和介绍,将本文所提出的转矩控制方法称为最优直接转矩控制。

1 永磁同步电机最优直接转矩控制原理

1.1 转矩控制原理分析

对电机转矩的控制最终落实到对电压矢量的选择上,对于定子绕组为三角形连接的永磁同步电机,6个运动电压矢量分布如图1所示。图中,αβ为两相静止坐标系;dq为转子同步旋转坐标系;xy 为定子磁链同步旋转坐标系;

s

ψ为定子磁链,其相

对于α轴角度为

se

θ;

f

ψ为转子永磁体磁链,其相

对于α轴角度为

re

θ;定转子磁链之间的夹角为δ。

对于隐极式永磁同步电机,其转矩[1]为

e s

f s f s s

3sin/(2)3/(2)

q

T p L p L

ψψδψψ

== (1)

DOI:10.13334/j.0258-8013.pcsee.2011.27.015

110 中 国 电 机 工 程 学 报 第31卷

式中:s L 为电机直交轴电感;s q ψ为定子磁链交轴分量。

U

5

图1 电压矢量和定转子磁链位置

Fig. 1 Voltage vector, stator and rotor flux linkage

电机转矩的微分可表示如下:

s e f s d d 3d 2d q T p

t L t

ψψ= (2) 由式(2)可知,对电机转矩的有效控制也就是对定子磁链交轴分量的有效控制,而对定子磁链的控制最终落实到对电压矢量的选择上,电压矢量和定子磁链矢量之间的关系[1]为

s

s s s d d R t

−=

u i ψ (3) 式中:s u 为电压矢量;s R 为定子电阻;s i 为定子电流矢量。

由式(3)

中,T s 为控制周期,U x s()n ψ;转子磁链分别为f (1)n −ψ和f ()n ψ为(1)n δ−和()n δ。

图2 定转子磁链和转矩角变化 Fig. 2 Variation of stator, rotor flux linkage and power angle

刻,则在零时刻的dq 坐标系中,d 轴和f (1)n −ψ重合,

q 轴超前于d 轴90°,从s(1)n −ψ和s()n ψ的矢尖向d 轴

作垂线,分别交d 轴于D 和F 点,从s(1)n −ψ矢尖向

AF 作垂线交于E 点。从图2所示的dq 坐标系中可知,电压矢量交轴分量u s q 在控制周期内的积分和定子磁链交轴分量的变化量之间满足:

s s s ()s (1)q q n q n u T AE AF EF ψψ−==−=− (4)

根据式(4)可知,

当需要快速增加或减少电机转矩时,应选择使定子磁链交轴分量变化最快的空间电压矢量。结合图1可知,随着转子磁链角度的变化,各个运动电压矢量的交轴分量随着转子磁链角度的变化而变化。设电压矢量幅值为1 V ,逆时针超前于转子永磁体磁链的方向为转矩增加的方向,规定为正方向,则各个运动电压矢量交轴分量随转子角度的变化为

1re 2

re 3re 4

re 5re 6re :sin(30)

:sin(90)

:sin(150)

:sin(210):sin(270):sin(330)

U U U U U U θθθθθθ°−⎧⎪°−⎪⎪°−⎪⎨

°−⎪⎪°−⎪°−⎪⎩ (5) 将式(5)中各个电压矢量交轴分量随转子角度变化情况示于图3中。

图3 电压矢量交轴分量随转子磁链角度变化情况

Fig. 3 D-axis component of voltage vector vs. rotor position

由图3可知,在θre ∈[0, 2π],转子角度被平均分成6个扇区,每个扇区内电压矢量交轴分量都存在

最大值和最小值。以θre ∈[6π,36

π

]扇区为例,如 果需要使电机转矩变化为正向最大,则应选择最优电压矢量U 3,以快速增加定子磁链交轴分量;同理,如果需要使电机转矩变化为负向最大,则应选择最

第27期 杨建飞等:永磁同步电机最优直接转矩控制 111

表1 最优电压矢量选择表

Tab. 1 Optimal voltage vector select table

θre ∈

τ 11[0,)(,2]66

πππU [,)62ππ 5[,)26ππ 57[

,66ππ 73[

,)62ππ 311[

,)26ππ 1 U 2 U 3 U 4 U 5 U 6 U 1 0 U 0(U 7) U 0(U 7) U 0(U 7) U 0(U 7) U 0(U 7) U 0(U 7) −1

U 5

U 6

U 1

U 2

U 3

U 4

优电压矢量U 6,以快速减少定子磁链交轴分量;当电机转矩在转矩调节器零电压矢量作用范围内,则选择零电压矢量。据此,可以得到表1所示的最优电压矢量选择表,其中τ为转矩调节器输出标志,

τ =1表示需要增加转矩,τ =0表示需要保持转矩, τ =−1表示需要减小转矩,U 0和U 7为零电压矢量,

其根据功率管开关次数最少原则确定。

根据转矩调节器输出结果,并结合转子磁链角度,由表1选择最优电压矢量作用于电机,实现对电机转矩的最优控制。 1.2 定子磁链幅值的限幅方法

从图1可以看到,运动电压矢量不仅包括交轴分量,也包括直轴分量,因此当运动电压矢量作用于电机后,不仅引起定子磁链交轴分量的变化,同时还引起了定子磁链直轴分量的变化,如果不对其进行,则很容易超出电机额定定子磁链幅值。如果定子磁链幅值过大,导致定子绕组磁链饱和,最终发生过流,将使电机无法稳定运行,因此在永磁同步电机转矩控制过程中,必须检测定子磁链幅值,一旦检测到定子磁链幅值超过了额定值,则必须对定子磁链幅值进行限幅。

永磁同步电机在xy 定子同步旋转坐标系下定子电压和定子磁链幅值有如下关系[1]:

s s s s s s s r s s s s s d d d ()d x x y y

y U R i t

U R i R i t ψδωψωψ⎧

=+⎪⎪⎨

⎪=++=+⎪⎩

(6) 式中:s x i 、s y i 分别为定子电流在定子同步旋转坐标系下的x 轴分量和y 轴分量;s x U 、s y U 分别为定子 电压在定子磁链同步旋转坐标系下的x 轴分量和y 轴分量;s ω为定子磁链旋转角速度。

由式(6)可知,在忽略定子电阻压降的情况下,定子电压x 轴方向的分量直接决定了定子磁链幅值的变化,因此,为达到有效定子磁链幅值的目的,应选择沿着定子磁链法线方向电压分量最优的电压矢量作用于电机。在磁链限幅过程中要考虑转

矩控制要求,此时通过控制定子磁链位置进而改变转矩角来实现,由式(6)可知,此时应选择磁链切线方向电压分量符合转矩要求的电压矢量。设运动电压矢量幅值为1 V ,将逆时针超前于定子磁链的方向规定为正方向。由图1可知,各个运动电压矢量沿着定子磁链法线方向的分量随着定子磁链角度

的变化而变化,是定子磁链相对于α 轴角度se θ的函数,分别表示为

1se 2

se 3se 4

se 5se 6se :cos(30)

:cos(90)

:cos(150)

:cos(210):cos(270):cos(330)

U U U U U U θθθθθθ°−⎧⎪°−⎪°−⎪⎨

°−⎪⎪°−⎪

°−⎩ (7) 同理,各个电压矢量沿着定子磁链切线方向的分量可表示为

1se 2se 3se 4

se 5se 6se :sin(30):sin(90):sin(150)

:sin(210):sin(270):sin(330)

U U U U U U θθθθθθ°−⎧⎪

°−⎪⎪°−⎪⎨

°−⎪⎪°−⎪°−⎪⎩ (8) 根据上文的分析,在定子磁链同步旋转坐标系中,定子电压x 轴方向分量决定了定子磁链幅值的

变化,定子电压y 轴方向分量决定了定子磁链位置的变化,将电压矢量沿定子磁链法线和切线方向的分量随定子磁链角度的变化情况示于图4中。

从图4(a)可以看到,在θse ∈[0, 2π],定子磁链角度范围被平均分成6个扇区,在每个扇区内电压矢量沿定子磁链法线方向分量都存在最大值和 最小值。在磁链限幅条件下,以θ∈[0,π/3]扇区为例说明电压矢量的选择。由图4(a)可知,在此扇区内当需要减小定子磁链幅值时,可选的电压矢量为U 3、U 4和U 5。根据3个电压矢量分量在图4(b)中的变化情况,如果需要增加转矩,则选择使定子磁链幅值减小,同时使定子磁链角度增大的电压矢量

112

中 国 电 机 工 程 学 报 第31卷

(a) 电压矢量沿定子磁链法线方向分量变化

6 π 6 3π 6 5π 67π 6 9π 6 11π 6

12π

(b) 电压矢量沿定子磁链切线方向分量变化

图4 电压矢量分量随定子磁链角度变化情况 Fig. 4 Normal and tangential direction component of

voltage vector vs. stator flux linkage position

U 3;如果需要减小转矩,则选择使定子磁链幅值减小,同时使定子磁链角度减小的电压矢量U 5;如果电机转矩在转矩调节器零电压矢量作用范围内,则选择使定子磁链幅值减小,同时对定子磁链角度的影响在一个扇区内平均值为0的电压矢量U 4。据此,可得定子磁链限幅条件下电压矢量选择依据,如表2所示,其中ε 为转矩调节器输出标志,θse 为定子磁链角度。

表2 定子磁链限幅条件下电压矢量选择表 Tab. 2 Voltage vector select table under

flux linkage limitation

se θ∈

ε [0,)3π

2[,)33ππ

2[

,)3ππ

4[,

3

ππ

45[

,)33ππ 5[

,2]3ππ1 U 3 U 4 U 5 U 6 U 1 U 2 0 U 4 U 5 U 6 U 1 U 2 U 3 −1

U 5

U 6

U 1

U 2

U 3

U 4

2 最优直接转矩控制方法的实现

根据上文分析,采用最优DTC 方法时需要已知电机转矩和转子磁链所处扇区,而为了定子磁链幅值,则需要知道定子磁链幅值以及定子磁链所处扇区。在静止两相坐标下永磁同步电机方程[1]如下所示:

s s s s s s s s s s se s e s s s s ()d ()d arctan 3()2

u R i t u R i t T p i i αααββββααββαψψψθψψψ⎧=−⎪

=−⎪⎪=⎪⎨

⎪=⎪⎪

⎪=−⎩∫ (9) 式中:s αψ、s βψ分别为定子磁链在静止两相坐标轴分量;s u α、s u β分别为定子电压在静止两α、β轴分量;s i α、s i β分别为定子电流在 α、β轴分量。根据式(9)即可确定定

1

se θ、re θ以及转矩角δ之间有如下关系:

re se θθδ=− (10)

对于隐极式电机,根据式(1)有

1

e s

s f

2sin 3T L p δψψ−= (11)

根据式(9)得到电机转矩和定子磁链幅值,代入式(11)得到转矩角δ,

结合式(10)即可得到转子磁链角度re θ,根据re θ可判断转子磁链所处扇区。采用最优DTC 时,系统控制框图如图5所示,

图5 最优直接转矩控制方法系统控制框图 Fig. 5 Control block diagram of proposed DTC

3 实验研究

在基于TMS320LF2812的通用数字平台上对所提控制方法进行实验验证。永磁同步电机参数如

第27期 杨建飞等:永磁同步电机最优直接转矩控制 113

表3所示。采用传统DTC 时,定子磁链给定为额定定子磁链0.9 Wb ;

采用本文提出的最优DTC 时,定子磁链限幅值为0.9 Wb ,控制周期60 μs 。

1)不同负载转矩下磁链轨迹比较。

表3 永磁同步电机参数 Tab. 3 Motor parameters

电机参数

数值

额定相电压/V 257

额定相电流/A 1.5 额定转速/(r/min) 1 500 极对数 2

直轴电感/H 0.113 3

交轴电感

/H 0.129 5 定子电阻/Ω

22.5

转子永磁体磁链/Wb 0.86

额定转矩/(N ⋅m) 5.8

电机在额定转速1 500 r/min 时,分别采用传统

DTC 和最优DTC 方法,在不同负载转矩下定子磁链轨迹如图6所示。

由图6可以看出,无论电机负载转矩如何变化,定子磁链轨迹基本不变,对应于一个扇区内要用到

ψs β(0.45 W b /格)

ψs α(0.45 Wb/格)

ψs β(0.45 W b /格)

ψs α(0.45 Wb/格)(a) 传统DTC (空载)

(b) 最优DTC (空载)

ψs β(0.45 W b /格)

ψs α(0.45 Wb/格)

ψs β(0.45 W b /格)

ψs α(0.45 Wb/格)(c) 传统DTC (半载)

(d) 最优DTC (半载)

ψs β(0.45 W b /格)

ψs α(0.45 Wb/格)

ψs β(0.45 W b /格)

ψs α(0.45 Wb/格)(e) 传统DTC (满载)

(f) 最优DTC (满载)

图6 采用不同控制方法时,不同负载转矩下

定子磁链轨迹

Fig. 6 Stator flux locus under different load with

different methods

4个运动电压矢量[1]。根据最优DTC 定子磁链轨迹同时结合表1可知,在磁链限幅范围内一个扇区仅需要2个运动电压矢量,所需运动电压矢量减少,开关次数降低。同时,在最优DTC 中,定子磁链幅值能够随着负载转矩的变化而自适应变化,特别是随着负载转矩的降低,定子磁链幅值呈减小的趋

势,而定子磁链幅值的减小意味着无功励磁电流的

减小,功率因数的提高。 2)不同转速下稳态性能比较。

对电机在不同转速额定负载转矩条件下的稳态性能进行比较,电机转矩波形如图7所示。根据

图7可得试验结果如表3所示。

T e (1(N ⋅m )/格)

t (100 ms/格)

T e (1(N ⋅m )/格)

t (100 ms/格)

(a) 传统DTC (n =1 500 r/min) (b) 最优DTC(n =1 500 r/min)

T e (1(N ⋅m )/格)

t (100 ms/格)

T e (1(N ⋅m )/格)

t (100 ms/格)

(c) 传统DTC (n =750 r/min)

(d) 最优DTC (n =750 r/min)

T e (1(N ⋅m )/格)

t (100 ms/格)

T e (1(N ⋅m )/格)

t (100 ms/格)

(e) 传统DTC (n =300 r/min) (f) 最优DTC (n =300 r/min)

图7 采用不同控制方法时不同转速下转矩波形 Fig. 7 Torque waveform under different load with

different methods

表3 不同转速下稳态转矩脉动

Tab. 3 Torque ripple under different speed

电机转速/ (r/min) 传统DTC 转矩脉动/

(N ⋅m) 最优DTC 转矩脉动/

(N ⋅m) 1 500

2.0

1.7

750 1.8 1.6 300 1.6

1.4

由表3可知,相比于传统DTC ,采用本文所提的最优DTC ,电机的稳态性能更好。

3)电机动态性能比较。

在电机突加给定转矩5.8 N ⋅m 时,分别采用两种控制方法的转矩波形如图8和图9所示。

114 中 国 电 机 工 程 学 报 第31卷

T e (2(N ·m )/格)

t (5 ms/格)

图8 传统DTC 动态响应

Fig. 8 Dynamic performance of traditional DTC

T

e (2(N ·m )/格)

t (5 ms/格)

图9 最优DTC 动态响应

Fig. 9 Dynamic performance of proposed DTC

由图8、9可知,2种方法的转矩动态响应时间均在2

ms 左右,并且达到给定转矩后,最优DTC 具有更低的转矩脉动,从最优DTC 控制过程可知,由于仅将电机转矩作为直接控制目标,省去了磁链控制要求,从而能够实现对转矩的精确控制,获得更好的稳态性能。

综合上文的实验说明,实现永磁同步电机DTC 思想的方案不是唯一的,本文所提的方法在省去定子磁链控制环的条件下,仍能实现电机的稳定运行,同时保持电机动态性能优良。

4 结论

永磁同步电机转子磁链为定值,采用DTC 时可以省去磁链控制环节,提出了一种最优DTC 控制方法,和传统DTC 相比有如下特点:

1)省去了磁链控制环,磁链幅值能够随着负载转矩的情况自适应变化,减小了励磁电流大小;

2)仅根据转矩控制要求选择最优电压矢量,减小了开关次数,降低了开关损耗;

3)保持了DTC 动态响应快的优点,同时具有更好的稳态性能。

为永磁同步电机高性能控制研究提供了一条新的思路。

参考文献

[1] Zhong L ,Rahman M F ,Hu Y W ,et al .Analysis of direct

torque control in permanent magnet synchronous motor drives[J].

IEEE Transactions on Power Electronics ,1997,12(3):528-535.

[2] Zhong L ,Rahman M F ,Hu Y W ,et al .A direct torque

controller for permanent magnet synchronous motor drives[J].IEEE Transactions on Energy Conversion ,1999,14(3):637-2.

[3] Hu Yuwen ,

Tian Cun ,Gu Yikang ,et al .In-depth research on direct torque control of permanent magnet synchronous motor[C]//28th Annual Conference of the IEEE Industrial Electronics Society .Sevilla :IEEE Industrial Electronics Society ,2002:1060-1065.

[4] Buja G S ,Kazmierkowski M P .Direct torque control of

PWM inverter-fed AC motors-a survey[J].IEEE Transactions on Industrial Electronics ,2004,51(4):744-757.

[5] Tang Lixin ,Zhong Limin ,Rahman M F ,et al .A novel

direct torque control scheme for interior permanent magnet synchronous machine drive system with low ripple in torque and flux ,and fixed switching frequency[C]//Conference Record of the 37th IAS Annual Meeting Industry Applications Conference .Pittsburgh :IEEE ,2002:104-111.

[6] 孙丹,

贺益康.基于恒定开关频率空间矢量调制的永磁同步电机直接转矩控制[J].中国电机工程学报,2005,

25(12):112-116.

Sun Dan ,He Yikang .Space vector modulated based constant switching frequency direct torque control for PMSM[J].Proceedings of the CSEE ,2005,25(12):112-116(in Chinese).

[7] Singh B ,Singh B P ,Dwivedi S .DSP based

implementation of sliding mode speed controller for direct torque controlled PMSM drive [C]//IEEE International Conference on Industrial Technology .Mumbai :IEEE Industrial Electronics Society ,2006:1301-1308. [8] 童克文,张兴,张昱,等.基于新型趋近律的永磁同步

电动机滑模变结构控制[J].中国电机工程学报,2008,

28(21):102-106.

Tong Kewen ,Zhang Xing ,Zhang Yu ,et al .Sliding mode variable structure control of PMSM based on a novel

第27期杨建飞等:永磁同步电机最优直接转矩控制 115

reaching law[J].Proceedings of the CSEE,2008,28(21):

102-106(in Chinese).

[9] Romeral L,Arias A,Aldabas E,et al.Novel direct torque

control(DTC) scheme with fuzzy adaptive torque-ripple

reduction[J].IEEE Transactions on Industrial Electronics,

2003,50(3):487-492.

[10] Telford D,Dunnigan M W,Williams B W.A novel

torque-ripple reduction strategy for direct torque control

[J].IEEE Transactions on Industrial Electronics,2001,

48(4):867-870.

[11] Kang J K,Sul S K.New direct torque control of induction

motor for minimum torque ripple and constant switching

frequency[J].IEEE Transactions on Industry Applications,1999,35(5):1076-1082.

[12] Kang J K,Sul S K.Analysis and prediction of inverter

switching frequency in direct torque control of induction

machine based on hysteresis bands and machine

parameters[J].IEEE Transactions on Industry Electronics,2001,48(3):545-553.

[13] 徐艳平,钟彦儒.扇区细分和占空比控制相结合的永磁

同步电机直接转矩控制[J].中国电机工程学报,2009,29(3):102-108.

Xu Yanping,Zhong Yanru.Sectors subdivision and duty ratio control combined DTC for PMSM[J].Proceedings of the CSEE,2009,29(3):102-108(in Chinese).

收稿日期:2010-11-02。

作者简介:

杨建飞(1982),男,博士研究生,研究方向为

永磁电机直接转矩控制,yjfsmile@nuaa.edu.cn;

胡育文(1944),男,教授,博士生导师,主要

从事飞机、车辆电源系统,功率电子与电机控制方

面的研究。

(编辑李婧妍)杨建飞

文档

永磁同步电机最优直接转矩控制_杨建飞

第31卷第27期中国电机工程学报Vol.31No.27Sep.25,20112011年9月25日ProceedingsoftheCSEE©2011Chin.Soc.forElec.Eng.109文章编号:0258-8013(2011)27-0109-07中图分类号:TM761文献标志码:A学科分类号:470·40永磁同步电机最优直接转矩控制杨建飞,胡育文(南京航空航天大学航空电源航空科技重点实验室,江苏省南京市210016)OptimalDirectTorqueControlofPermane
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top