最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

初中数学总复习知识点

来源:动视网 责编:小OO 时间:2025-09-26 20:02:07
文档

初中数学总复习知识点

初中数学总复习知识点一、代数1.数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。下列各数,0,,0.,tan45°,,0.030030003……,中无理数有___________2.自然数(0和正整数);奇数2n-1、偶数2n、质数、合数。科学记数法:(1≤a<10,n是整数),有效数字。用科学计数法表示:0.000005486=_____________356800000000=_______________0.
推荐度:
导读初中数学总复习知识点一、代数1.数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。下列各数,0,,0.,tan45°,,0.030030003……,中无理数有___________2.自然数(0和正整数);奇数2n-1、偶数2n、质数、合数。科学记数法:(1≤a<10,n是整数),有效数字。用科学计数法表示:0.000005486=_____________356800000000=_______________0.
初中数学总复习知识点

一、代数

1.数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。

下列各数,0,,0.,tan45°,,0.030030003……,中无理数有___________

2.自然数(0和正整数);奇数2n-1、偶数2n、质数、合数。

科学记数法:(1≤a<10,n是整数),有效数字。

用科学计数法表示:0.000005486=_____________    356800000000=_______________

0.040879≈___________(精确到十分位) ,770000≈___________(精确到百万位)

-0.05066≈__________(保留两个有效数字),37984000000≈___________(保留三个有效数字)

近似数4.38万是精确到______位,有_______个有效数字

3.(1)倒数积为1(0没有倒数);(2)相反数和为0,商为-1;(3)绝对值是距离,非负数。

的相反数是________,  的倒数是__________

4.数轴:(1)①定义(“三要素”);②点与实数的一一对应关系。     

5非负数:正实数与零的统称。(表为:x≥0)

(1)常见的非负数有:

(2)性质:若干个非负数的和为0,则每个非负数均为0。

则=________

6.去绝对值法则:正数的绝对值是它本身,零的绝对值是零;负数的绝对值是它的相反数。

=________,   数轴上的点A到原点的距离是6,则点A表示的数为________

7.实数的运算:加、减、乘、除、乘方、开方;运算法则,定律,顺序要熟悉。

计算:(1)

(2)先化简:,再在-2,-1,0,1,2中选取一个数作为a的值代入求值:

8.代数式,单项式,多项式。整式,分式。根式

单项式的次数是____,系数是____,  若有意义,则x的取值范围是______

9. 同类项。合并同类项(系数相加,字母及字母的指数不变)。

下列运算中正确的是(      )

A.            B. 

C.            D. 

10. 算术平方根:  (正数a的正的平方根);     平方根: 

的平方根为_________,的立方根为_________

11. (1)最简二次根式:①被开方数的因数是整数,因式是整式;

②被开方数中不含有开得尽方的因数或因式;

(2)同类二次根式:化为最简二次根式以后,被开方数相同的二次根式;

(3)分母有理化:化去分母中的根号。

下列运算正确的是(     ).

A.   B.  C.   D. 

12.因式分解方法:把一个多项式化成几个整式的积的形式A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法。

(1) =__________,  =_______________, =_________

13.指数:n个a连乘的式子记为。(其中a称底数,n称指数,称作幂。)

正数的任何次幂为正数;负数的奇次幂为负数,负数的偶次幂为正数。

14. 幂的运算性质:①am an=am+n;  ②am÷an=am-n;  ③(am)n=amn;

④( ab )n =anbn ; ⑤

下列计算正确的是(    ).

A.     B.     C.    D.

下列运算正确的是(   )

A.(3xy2)2=6x2y4   B.   C.(-x)7÷(-x)2=-x5      D.(6xy2)2÷3xy=2xy3

______,    ________

15.分式的基本性质:

16.乘法公式:用于化简:(a+b)(a-b)=a2-b2; (a+ b)2= a2+2ab+b2;   

用于因式分解:a2-b2=(a+b)(a-b); a2+2ab+b2 = (a+ b)2

17.算术平方根的性质:①;②  ; 

③   (a≥0,b≥0); ④(a≥0,b>0)

18.方程基本概念:方程、方程的解(根)、方程组的解、解方程组

1.一元一次方程:最简方程ax=b(a≠0);解法。  

2.二元一次方程的解有无数多对。

3.二元一次方程组:①代入消元法;②加减消元法。

4.一元二次方程:

(1)一般形式:的求根公式

(2)常用方法①直接开平方法;  ②配方法;  ③公式法;  ④因式分解法。

(3)根的判别式:               

当△>0时,方程有两个不相等的实数根;

当△=0时,方程有两个相等的实数根;

当△<0,方程没有实数根。

(4)根与系数的关系:    ,

例:方程无实根,则的取值范围是______

   若、是方程的两根,

    则=_______________________

(5)分式方程:                                   ;

分式方程有增根,必须要检验。应用题也不例外。

解方程:

(1)(配方法) (2)(公式法)  (3)

19.不等式:

(1)一元一次不等式的解、解一元一次不等式。(乘除负数要变方向)

(2)一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)

20.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系;

1.坐标平面内的点与一个有序实数对之间是一一对应的。

2.点的坐标的特征:

(1)各象限内点的坐标特征:

(2)x轴上的点y=0;y轴上的点x=0;一、三象限角平分线:y=x;二、四象限角平分线:y=-x。

(3)P(a, b)关于x轴对称P’(a, -b);  关于y轴对称P’’(a, -b);关于原点对称P’’’(-a, -b).

3.坐标系内的距离:   

(1)点到坐标轴的距离:

(2)两点之间的距离:

则AB=

4.中点坐标: 则线段AB的中点M()

21. 函数

1.正比例函数、一次函数、反比例函数

正比例函数一次函数反比例函数
解析式
图象经过原点的直线直线双曲线
经过的象限
增减性
对称性
其它

性质

2.二次函数

1、二次函数

(1)顶点(2)对称轴

(2)最值:当x=时

(5)增减性                                        

2、平移原则:把解析式化为顶点式,“左+右-;上+下-”。

3、二次函数与二次方程:

△>0       一元二次方程有两个不相等实根          抛物线与x轴有两个交点

△=0       一元二次方程有两个相等实根            抛物线与x轴有一个交点

△>0       一元二次方程无实根                    抛物线与x轴没有交点

4、①a~开口方向,大小;②b~对称轴与y轴,左同右异;③c~与y轴的交点上正下负;④b2-4ab~与x轴的交点个数;⑤~对称轴与常数比;⑥a+b+c~点看(1, a+b+c);a-b+c~点看(-1, a-b+c)。

(1)直线不经过第三象限,则的取值范围是__________________

(2)如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(2,1),则不等式(k2-k1)x+b2-b1>0的解集为_____________________

(3)△AOB的面积为2,则此双曲线的解析式为___________________

(4)将抛物线上3右2平移后所得到的抛物线为________________

(5)抛物线的对称轴为________,顶点坐标为_________

与x轴的交点坐标为___________________

(6)抛物线的对称轴为直线x=2,与x轴的一个交点坐标为(–1,0)

则一元二次方程的解为_______________________

若a>0,则一元二次不等式的解为______________________

(7)抛物线,当-4≤x≤2时,y最大=_______y最小=____________

(8)如图所示,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴,下列所给出结论:①a>0;②b>0;③c>0;④a+b+c=0,⑤ abc<0;⑥ 2a+b>0; ⑦a+c=1; ⑧a>1其中正确的结论的序号是            

二、几何

22.(1)两点之间,线段最短(两点之间线段的长度,叫做这两点之间的距离);

(2)点到直线之间,垂线段最短(点到直线的垂线段的长度叫做点到直线之间的距离);

(3)两平行线之间的垂线段处处相等(这条垂线段的长度叫做两平行线之间的距离);

(4)同平行于一条直线的两条直线平行(传递性);

(5)同垂直于一条直线的两条直线平行。

23.中垂线:性质:在垂直平分线上的点到该线段两端点的距离相等;

判定:到线段两端点距离相等的点在这线段的垂直平分线上。

24.角平分线:性质定理:角平分线上的点到该角两边的距离相等;

判定定理:到角的两边距离相等的点在该角的角平分线上。

25.同角或等角的余角(或补角)相等。

26.平行线:性质:两直线平行,同位角(内错角)相等,同旁内角互补;

判定:同位角(内错角)相等(同旁内角互补),两直线平行。

27.三角形:①三角形三个内角的和等于180º;任意一个外角等于和它不相邻的两个内角的和;

②第三边大于两边之和,小于两边之差;(已知两边之差 < 第三边 < 已知两边之和)

③直角三角形斜边上的中线等于斜边的一半;

④勾股定理:直角三角形两直角边的平方和等于斜边的平方;逆定理也成立。

⑤300角所对直角边等于斜边的一半

28.全等三角形:①全等三角形的对应边,角相等。②条件:SSS、AAS、ASA、SAS、HL。

29.等腰三角形:性质:①两腰相等②等边对等角;等角对等边;③三线合一;    

    判定:①两边相等②等角对等边

等边三角形判定:①等腰+60º②两个60º角 ③三边都相等

30.三角形的中位线平行于第三边并且等于第三边的一半;梯形的中位线平行于两底并且等于两底和的一半

原四边形中点四边形
任意四边形
对角线相等的四边形
对角线垂直的四边形
对角线相等且垂直的四边形
31.n边形的内角和为(n-2).1800,外角和为3600,正n边形的每个内角等于             。

32.平行四边形的性质:①两组对边分别平行且相等;

②两组对角分别相等;③两条对角线互相平分。

判定:①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等;④两组对角分别相等;⑤两条对角线互相平分。

33.特殊的平行四边形:矩形、菱形与正方形。

34.梯形:一组对边平行而另一组对边不平行的四边形。

等腰梯形的性质:①两腰相等; ②同一底上的两个底角相等③等腰梯形的对角线相等。

等腰梯形的判定:①两腰相等的梯形; ②同一底上的两个底角相等的梯形

35.梯形常用辅助线:

36.平面图形的密铺(镶嵌):同一顶点的角之和为3600。

37.轴对称:翻转180º能重合;  

   中心对称(图形):旋转180度能重合。

38.①轴对称变换:对应线段,对应角相等;对称轴垂直平分对称点的连线。

②图形的平移:对应线段,对应点所连线段平行(或在同一直线上)且相等;对应角相等;平移方向和距离是它的两要素。

③图形的旋转:每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。旋转的方向、角度、旋转中心是它的三要素。

④位似图形:它们具有相似图形的性质外还有图形的位置关系(每组对应点所在的直线都经过同一个点—位似中心);对应点到位似中心的距离比就是位似比,对应线段的比等于位似比,位似比也有顺序;已知图形的位似图形有两个,在位似中心的两侧各有一个。位似中心,位似比是它的两要素。

39.相似图形:形状相同,大小不一定相同。

(1)判定①平行;②两角相等;③两边对应成比例,夹角相等;④三边对应成比例。

(2)对应线段之比、对应高之比、对应周长比等于相似比;面积比等于相似比的平方。

(3)比例的基本性质:若  , 则ad=bc;(d称为第四比例项)

比例中项:若, 则  。(b称为a、c的比例中项;c称为第三比例项)

已知a=2,c=4,b是 a、c的比例中项,则b=___________

(4)黄金分割:线段AB被点C分割(AC(5)相似基本图形:平行,不平行;变换对应关系作出正确的分类。

40.三角函数:

在Rt△ABC中,设k法转化为比的问题是常用方法。

(1).定义:

,, 

(2)特殊角的三角函数值:

30°

45°

60°

sinα

cosα

tanα

    

(3)应用:①俯、仰角  ②方位角     ③坡度、坡角:

    

41.圆:

1、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

2、在同圆或等圆中:圆心角相等、弧相等、弦相等已知其中一个可行其余两个。

3、点与圆的位置关系:

4、直线和圆的位置关系:

d>r时直线和圆相离;d=r时直线和圆相切;d5、两圆的位置关系:

两圆外离             d > R+r

两圆外切             d = R+r

两圆相交       R-r < d < R=r (R≥r)          如果两圆相切,

两圆内切             d = R-r (R > r)         那么切点一定在连心线上

两圆内含          0≤d < R-r  (R > r)。

6、圆周角:同弧或等弧所对的圆周角等于圆心角的一半。

            同弧或等弧所对的圆周角相等。在同圆或等圆中,相等的圆周角所对的弧相等。

            直径或半圆所对的圆周角是直角。90°的圆周角所对的弦是直径。

7、切线的性质与判定:

性质:切线垂直于切半径

判定:①d=r   ②经过半径的外端且垂直于半径的直线是圆的切线

8、切线长定理:

PA、PB为⊙O的切线        ①PA=PB

②∠1=∠2

9、三角形的内切圆和外接圆:

三角形的内切圆三角形的外接圆
图形
圆心内心外心
内外心性质内心是三角形____________的交点

内心到______________的距离相等

内心是三角形____________的交点

内心到______________的距离相等

角度∠BIC=90°+∠A

∠BOC=2∠A或∠BOC=360°-2∠A

Rt△内切圆和

外接圆半径

r

R=c

其它
10、扇形的弧长和面积

       

11、圆锥、圆柱的侧面积和表面积

                 S圆柱侧=底面周长·高

                        

                                

圆柱的底面周长等于侧面展开矩形的一边长

圆柱的高等于侧面展开矩形的另一边长

圆锥的底面周长等于侧面展开扇形的弧长

圆锥的母线长等于侧面展开扇形的半径

例:将圆心角为216º半径为5的扇形卷成一个圆锥,则圆锥的母线长为_____圆锥的高为______。

42.(1)视点,视线,视角,盲区;投射线,投影,投影面.(投影类的题目常与全等、相似、三角函数结合进行相关的计算。)

(2) 中心投影:远光线(太阳光线);平行投影:近光线(路灯光线)。

(3)三视图:主视图,俯视图,左视图。

43.

44.面积问题:①同底(或同高),面积比等于高(或底)之比;②相似图形的面积比等于相似比的平方。

45.尺规作图:线段要截,角用弧作,角平分线、垂直平分线须熟记,外接圆、内切圆也不忘。

三、统计与概率

46.统计初步:通常用样本的特征去估计总体所具有的特征。

(1).总体,个体,样本,样本容量(样本中个体的数目)。

1)为了了解一批电视的使用寿命,从中抽取10只进行试验。

则其总体为_________________________,个体为________________________

样本为_______________________,样本容量为_____________

2)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是(    )

  A.170万    B.400    C.1万      D.3万

(2)众数:一组数据中,出现次数最多的数据。   

平均数:平均数是刻划数据的集中趋势(集中位置)的特征数。

中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)

①                         ;     ②

③若          ,           … ,             ; 则

(3)极差:样本中最大值与最小值的差。它是刻划样本中数据波动范围的大小。

方差:方差是刻划数据的波动大小的程度。                                      

标准差: 

3)一组数据16,20,22,25,24,25其平均数为__________中位数为__________,众数为____________,,方差为______________标准差为_____________

4)某班主任老师为了对学生乱花钱的现象进行教育指导,对班里每位同学一周内大约花钱数额进行了统计,如下表:

学生花钱数(元)510152025
学生人数71218103
根据这个统计表可知,该班学生一周花钱数额的众数、平均数是_____________

(4)调查:普查:具有破坏性、特大工作量的往往不适合普查;

抽样调查:抽样时要主要样本的代表性和广泛性。

5)下列说法正确的个数是  (      )                                               

①要了解一批灯泡的使用寿命,采用全面调查的方式

②要了解全市居民对环境的保护意识,采抽样调查的方式

③一个游戏的中奖率是1%,则做100次这这样的游戏一定会中奖

④若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定

A.0    B.1      C.2       D.3

(5)频数、频率、频数分布表及频数分布直方图:

6)为了描述我县城区某一天气温变化情况,应选择(     )

A.扇形统计图    B.条形统计图    C.折线统计图      D.直方图

7)某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是_________

8)2010年4月14日青海玉树发生7.1级地震,地震灾情牵动全国人民的心.某社区响应恩施州的号召,积极组织社区居民为灾区人民献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图8所示的不完整统计图.已知A、B两组捐款户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.

⑴  A组的频数是多少?本次调查样本的容量是多少?

⑵  求出C组的频数并补全直方图.

⑶  若该社区有500户住户,请估计捐款不少于300元的户数是多少?

47.概率:用来预测事件发生的可能性大小的数学量

(1)P(必然事件)=1;  P(不可能事件)=0;   0< P(不确定事件A)<1。

9)下列事件是必然事件的是(    ).

A.随意掷两个均匀的骰子,朝上面的点数之和为6    B.抛一枚硬币,正面朝上

C.3个人分成两组,一定有2个人分在一组         D.打开电视,正在播放动画片

(2)树形图或列表分析求等可能性事件的概率:                       ;

10)一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有8个,黄、白色小球的数目相.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,再次搅匀……多次试验发现摸到红球的频率是,则估计黄色小球的数目是_________

11)抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现“一次正面,两次反面”的概率为__________________

12)如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每个扇形内的机会均等,同时转动两个转盘,则两个指同时落在标有奇数扇形内的概率为__________________

13)小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是____________

(3)游戏公平性是指双方获胜的概率的大小是否相等(“牌,球”游戏中放回与不放回的概率是不同的)。

14)小莉的爸爸买了今年七月份去上海看世博会的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.

(1)请用数状图或列表的方法求小莉去上海看世博会的概率;

(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.

文档

初中数学总复习知识点

初中数学总复习知识点一、代数1.数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。下列各数,0,,0.,tan45°,,0.030030003……,中无理数有___________2.自然数(0和正整数);奇数2n-1、偶数2n、质数、合数。科学记数法:(1≤a<10,n是整数),有效数字。用科学计数法表示:0.000005486=_____________356800000000=_______________0.
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top