最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

因式分解知识点归纳总结归纳

来源:动视网 责编:小OO 时间:2025-09-26 16:38:43
文档

因式分解知识点归纳总结归纳

因式分解知识点归纳总结概述定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。分解因式与整式乘法互为逆变形。因式分解的方法:提公因式法、公式法、分组分解法和十字相乘法注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1))分解因式技巧1.分解因式与整式乘法是互为逆变形。2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须
推荐度:
导读因式分解知识点归纳总结概述定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。分解因式与整式乘法互为逆变形。因式分解的方法:提公因式法、公式法、分组分解法和十字相乘法注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1))分解因式技巧1.分解因式与整式乘法是互为逆变形。2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须
因式分解知识点归纳总结概述

定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。

分解因式与整式乘法互为逆变形。 

因式分解的方法:提公因式法、公式法、分组分解法和十字相乘法

注意三原则

  1 分解要彻底

  2 最后结果只有小括号

  3 最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1)) 

分解因式技巧

  1.分解因式与整式乘法是互为逆变形。

  2.分解因式技巧掌握:

  ①等式左边必须是多项式;

  ②分解因式的结果必须是以乘积的形式表示;

  ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;

  ④分解因式必须分解到每个多项式因式都不能再分解为止。

  注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

基本方法

⑴提公因式法

  各项都含有的公共的因式叫做这个多项式各项的公因式。

  如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

  具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

  如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。

 注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式

提公因式法基本步骤:

  (1)找出公因式;

  (2)提公因式并确定另一个因式:

  ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;

  ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;

  ③提完公因式后,另一因式的项数与原多项式的项数相同。 

例如:-am+bm+cm=

    a(x-y)+b(y-x)=

⑵公式法

  如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

  平方差公式:a2-b2=(a+b)(a-b);

  完全平方公式:a2±2ab+b2=(a±b) 2;

  注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

  例如:a2 +4ab+4b2 =

⑶分组分解法

  能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。

  比如:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)

  同样,这道题也可以这样做。

  ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)

  几道例题:

  1. 5ax+5bx+3ay+3by

  2. x3-x2+x-1

   3. x2-x-y2-y

 ⑷十字相乘法

  这种方法有两种情况。

  ①x2+(p+q)x+pq型的式子的因式分解 

  这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) .

  ②kx2+mx+n型的式子的因式分解 

  如果有k=ac,n=bd,且有ad+bc=m时,那么kx2+mx+n=(ax+b)(cx+d).

  所以7x2-19x-6=(7x+2)(x-3).

  十字相乘法口诀:首尾分解,交叉相乘,求和凑中

多项式因式分解的一般步骤:

  ①如果多项式的各项有公因式,那么先提公因式; 

  ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; 

  ③如果用上述方法不能分解,那么可以尝试用分组来分解;

  ④分解因式,必须进行到每一个多项式因式都不能再分解为止。

  也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。”

因式分解练习题

(1)  

(4)   (5)  

(6)   (7)  

 (9)    (10) 

(  (13) 

(14)  (15) 

16) 

文档

因式分解知识点归纳总结归纳

因式分解知识点归纳总结概述定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。分解因式与整式乘法互为逆变形。因式分解的方法:提公因式法、公式法、分组分解法和十字相乘法注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1))分解因式技巧1.分解因式与整式乘法是互为逆变形。2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top