最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2019-2020学年福建省泉州市高二上学期期末教学质量跟踪监测数学答案

来源:动视网 责编:小OO 时间:2025-09-27 00:01:43
文档

2019-2020学年福建省泉州市高二上学期期末教学质量跟踪监测数学答案

保密★启用前泉州市普通高中2019-2020学年度上学期教学质量跟踪检测数学(空间坐标系、空间向量、直线与圆、圆锥曲线、数列)参及评分标准一、单项选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填在答题卡对应题号的位置上.题号123456710答案CBCDACCDDB8.选D.解析:因为00()Pxy,到焦点的距离02dy=+,则0022yy+=,解得02y=.9.选D.解析:因为直线0=+yx与直线02=++yx互相平行,
推荐度:
导读保密★启用前泉州市普通高中2019-2020学年度上学期教学质量跟踪检测数学(空间坐标系、空间向量、直线与圆、圆锥曲线、数列)参及评分标准一、单项选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填在答题卡对应题号的位置上.题号123456710答案CBCDACCDDB8.选D.解析:因为00()Pxy,到焦点的距离02dy=+,则0022yy+=,解得02y=.9.选D.解析:因为直线0=+yx与直线02=++yx互相平行,
保密★启用前

泉州市普通高中2019-2020学年度上学期教学质量跟踪检测

数学(空间坐标系、空间向量、直线与圆、圆锥曲线、数列)

参及评分标准

一、单项选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符

合题目要求的.请将答案填在答题卡对应题号的位置上.题号123456710答案

C

B

C

D

A

C

C

D

D

B

8.选D .解析:因为00()P x y ,到焦点的距离02d y =+,则0022y y +=,解得02y =.9.选D .

解析:因为直线0=+y x 与直线02=++y x 互相平行,

所以两直线之间的距离21

1|02|2

2

=+-=

d ,

由题意,圆C 与两直线相交,四个交点围成的四边形为正方形,则两平行线之间的距离即为正方形的边长,正方形的对角线即圆的直径.设圆的半径为r ,有222)2()2()2(+=r ,解得1=r ,

本题考查直线与圆的综合应用问题,属于中档题.

10.选B .

解析:当α与底面趋于平行时,τ几乎成为一个圆,

因此离心率可以充分接近0.

当α与底面的夹角最大时,τ的离心率达到最大,下面求解这一最大值.

如图,A ,B 为长轴,F 为焦点时,

e 最大.2a c BF BG +===,易知1b =,

所以5434

a c ⎧=⎪⎪⎨⎪=⎪⎩,35

e =.则离心率的取值范围是305⎛⎤ ⎥⎝⎦,.

二、多项选择题:

题号1112答案

AC

BCD

11.解析:设等差数列}{

n a 的公差为d ,则1113(4)721a a d a d ++=+,解得13a d =-,

所以1(1)(4)n a a n d n d =+-=-,所以40a =,故A 正确;因为61450S S a -==,所以16S S =,故C 正确;

由于d 的正负不清楚,故3S 可能为最大值或最小值,故B 不正确;因为35420a a a +==,所以35a a =-,即35a a =,故D 错误.

12.解析:对于选项A ,()

1112

AD A A B A BC =-+

,选项A 错误;对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .

以D 为坐标原点,DA ,DB ,1DD

分别为x ,y ,z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002a A ⎛⎫

⎪⎝⎭,,002B a ⎛⎫ ⎪ ⎪⎝⎭,,102B a b ⎛⎫ ⎪ ⎪⎝⎭,,102a C b ⎛

- ⎪⎝⎭,所以122a BC b ⎛⎫=-- ⎪ ⎪⎝⎭ ,,122a AB b ⎛⎫=- ⎪ ⎪⎝⎭

,.11BC AB ⊥ ,110BC AB ∴⋅=,即2

2

2

3+=022a a b ⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭

,解得22b a =.因为DE 平面11ABB

A ,则动点E 的轨迹的长度等于1B

B =

.选项B 正确.对于选项C ,在选项A 的基础上,002a A ⎛⎫

⎪⎝⎭,,3002B a ⎛⎫ ⎪ ⎪⎝⎭,,()000D ,,1022a C a ⎛⎫- ⎪ ⎪⎝⎭,所以002a DA ⎛⎫

= ⎪⎝⎭

,,1222a BC a ⎛⎫=- ⎪ ⎪⎝⎭ ,.因

为2

1112cos 6a BC DA BC DA BC DA ⎛⎫ ⎪⋅<>==

,.选项C 正确.

对于选项D ,点E 的轨迹为抛物线的一部分.选项D 正确.

三、填空题:本大题共4小题,每小题5分,共20分.每小题有难度明显差异的两空,第一空占2分,

第二空占3分.请将答案填在第4页对应题号的位置上.

13.(01)-,

,1y =.14.2,63.

153y =或3430x y -+=.

第二空解析:设切线长为L ,则L =

,所以当切线长L 取最小值时,PC 取最小值,

过圆心()02C ,作直线l 的垂线,则点P 为垂足点,此时,直线PC 的方程为063=+-y x ,

联立⎩⎨⎧=+-=-+0630123y x y x ,得3

3x y =⎧⎨=⎩

,点P 的坐标为()33,

.由题意可得

11

|

332|2=+-+-k k ,解得0=k 或4

3

=

k ,此时,所求切线的方程为3=y 或0343=+-y x .

本题考查过点的圆的切线方程的求解,考查圆的切线长相关问题,在过点引圆的切线问题时,要对直线的斜率是否存在进行分类讨论,另外就是将直线与圆相切转化为圆心到直线的距离等于半径长,考查分析问题与解决问题的能力,属于中等题.16.376,760.

解析:集合4

3

2

1

443210{|22222}A n n a a a a a ==⨯+⨯+⨯+⨯+⨯,

当4012310a a a a a =====,时,16n =;当012341a a a a a =====时,31n =;

所以4{16171831}A = ,

,,共有16个元素,故激活码为16(1631)

3762

⨯+=;

结合二进制表示,当5k =时,{}n c 的各项可以看成首位为1的六位二进制数,对于41a =,符合条件()1f x =的有8个数,

同理对于32101111a a a a ====,,时,符合条件的也分别是8个数,故激活码为(

)5

43210

162822222

760⨯+++++=.

四、解答题:本大题共6小题,共70分.解答应 出文字 明, 明过程或演算步 .

17.(本小题满分10分)解:(1)设{}n a 的公差为d ,

因为3a 是1a 与7a 的等比中项,

所以2317a a a =⋅.························································································1分因为12a =,

所以2

(22)2(26)d d +=⋅+.·········································································2分解得1d =,··································································································4分所以1n a n =+.····························································································5分(2)因为(21)(3)

22

n n n n n S +++=

=

,··································································7分令

(3)

272

n n +=,·························································································8分则2

3540n n +-=,······················································································9分解得6n =.

所以存在n 值为6,使得n S 的值为27.·····························································10分(注:第(2)问用其它方法求得6n =同样给分)

18.(本小题满分12分)解:(1)法一:

线段AB 中垂线为2x =,···············································································2分又圆心C 在直线3y =上,

故圆心C 为(23),.·······················································································4分

半径r =

=·································································5分

所以圆C 方程为22(2)(3)5x y -+-=.····························································6分

法二:设圆心(3)C a ,圆C 方程:222()(3)x a y r -+-=.········································1分

由(42)A ,(02)B ,在C 上有

222

222

(4)(23)(23)a r a r ⎧-+-=⎪⎨+-=⎪⎩,

···············································································3分

解得2a r =⎧⎪⎨=⎪⎩,································································································5分

∴圆C 的方程为2

2

(2)(3)5x y -+-=.·························································6分

(2)由已知得圆心C 到直线l

距离为1d ==.···················································8分

①当l 斜率不存在时,直线方程为1x =,此时圆心到直线l 距离为1,符合题意.········9分②当l 斜率存在时,设l :1(1)y k x -=-,即10kx y k --+=.

圆心C 到直线l

距离1d =

=,解得3

4

k =

.·····························11分故l 方程为3

1(1)4

y x -=

-,即3410x y -+=.综合①②有,所求直线方程为1x =或3410x y -+=.·······································12分

19.(本小题满分12分)

思路一

(1)解:设所求抛物线方程为2

2y px =,································································2分

依题意得36p =,···················································································3分解得2p =,···························································································4分故所求抛物线方程为24y x =.····································································5分

(2)联立方程组244y x y x ⎧=⎨=-⎩,

消去x ,得2

4160y y --=,①·······························6分

设()11A x y ,()22B x y ,由方程①得:1216y y =-,································7分

又2112

2244y x y x ⎧=⎪⎨=⎪⎩,

则2212121616y y x x ==,·····················································9分所以()()112212120OA OB x y x y x x y y ⋅=⋅=+=

,,·······································11分

所以OA OB ⊥.······················································································12分

思路二:(1)同思路一

(2)联立方程组244y x y x ⎧=⎨

=-⎩,

消去y ,得2

12160x x -+=,①·······························································6分设()11A x y ,()22B x y ,由方程①可得:12121216x x x x +=⎧⎨

⋅=⎩,

·········································································7分

由()11OA x y = ,()22OB x y =

故1212OA OB x x y y ⋅=+

,·············································································8分

又114y x =-,224y x =-,·········································································9分故()12121241616y y x x x x =-++=-,··························································10分

则0OA OB ⋅=

,························································································11分

所以OA OB ⊥.·························································································12分

20.(本小题满分12分)

解:[解法一](1)因为1(1)1n n na n a +-+=,两边同除以(1)n n +,得111(1)

n n a a n n n n +-=++.1分令n n a b n =,则11(1)

n n b b n n +-=+.由:213243112123134

b b b b b b -=

⨯-=⨯-=⨯ ,,11(1)n n b b n n

--=-·····································································3分得11111122334(1)n b b n n

-=++++⨯⨯⨯-⨯ 1111111(1)(()()223341n n

=-+-+-++-- 11n =-.···········5分又11

11b a ==,所以12n b n =-.························································6分(2)21n n a nb n ==-,令2(21)2n n n n C a n =⋅=-⋅,·································7分

所以1231123252(23)2(21)2n n n S n n -=⋅+⋅+⋅++-⋅+-⋅ ,·········8分

23412123252(23)2(21)2n n n S n n +=⋅+⋅+⋅++-⋅+-⋅ ,·············9分

①—②得231(12)22(222)(21)2n n n S n +-=++++--⋅ ,············10分

11

11

14(12)22(21)212

28(21)(21)2(23)26n n n n n n S n n n -+-++--=+⨯--⋅-=+---⋅=--⋅-,

所以1(23)26n n S n +=-⋅+.···························································12分

[解法二]

(1)因为1(1)1n n na n a +-+=,

所以11(1)(1)n n n n na n a n a na +--+=--,····················································1分

所以112n n n na na na +-=-,·······································································2分

所以112n n n a a a +-=+,

所以112n n n a a a +-=+,

所以{}n a 为等差数列,·············································································3分

又当1n =时,2121a a -=且11

a =所以23a =,··························································································4分

所以212d a a =-=,

所以21n a n =-,····················································································5分所以12n n a b n n =

=-.··············································································6分(2)同解法1

(注:第(1)问通过求123b b b ,发现12n b n

=-,给2分)

21.(本小题满分12分)

解法一:

明:(1)连接DO .设4EH a =,则EF =,翻折后的4BD DE FB a =+=.1分

在SAC △中,SA SC ==,4AC a =,O 为AC 的中点,2SO a ∴=.········2分又 在SOB △中,2BS a =,SP BO ⊥,P ∴为BO 的中点,·····························3分SP DO ∴ .·······························································································4分SP ⊄ 平面ACD ,DO ⊂平面ACD ,

SP ∴ 平面ACD .······················································································5分

解:(2)B DMN D BMN V V --= 且三棱锥D BMN -的高为定值,

BMN S ∴△最大时,三棱锥B DMN -的体积取得最大值.········································6分

设AM BN x ==(0x ≤≤),

()22111

sin )sin 3sin 222BMN S BM BN MBN x x MBN x a MBN ⎡⎤∴=⋅⋅∠=-∠=--+∠⎢⎥⎣⎦

△又sin MBN ∠ 为定值,

∴当x =时,BMN S △最大,即三棱锥B DMN -的体积最大.

此时M ,N 分别是AB ,BC 上的中点.···························································7分由(1)可得SP DO ,SP BO ⊥,DO BO ∴⊥.

DA DC = ,BA BC =,DO AC ∴⊥,BO AC ⊥.········································8分

以O 为坐标原点,OA ,OB ,OD 分别为x ,y ,z 轴的正方向建立空间直角坐标系Oxyz ,

则(200)A a ,,(00)B ,,(200)C a -,,(00)D ,,(0)M a ,

()

0N a =-,

,()DM a =- ,(200)NM a = ,

,(20)DA a =- ,

,(20)AB a =- ,.··················································································9分设平面DMN 的一个法向量为1111()x y z =,n .

00DM NM ⎧⋅=⎪∴⎨⋅=⎪⎩ ,n

n 1111020ax ax ⎧+-=⎪∴⎨=⎪

⎩,取11z =,则12y =,10x =,

∴平面DMN 的一个法向量为1(021)=,n .····················································10分设平面DAB 的一个法向量为2222()x y z =,n .

00DA AB ⎧⋅=⎪∴⎨⋅=⎪⎩ ,n

n 22222020ax ax ⎧-=⎪∴⎨-+=⎪⎩,

取2x =221y z ==,

∴平面DAB

的一个法向量为211)=n .···················································11分

则12121235cos 10

⋅<>==,n n n n n n .所以平面DAB 与平面DMN

所成锐二面角的余弦值为

10.································12分解法二:

明:(1)连接DO .

设4EH a =

,则EF =

,DO BO ==

,AB BC ==,

翻折后的4BD DE FB a =+=.······································································1分222BD DO BO =+ ,DO BO ∴⊥.·····························································3分又 SP BO ⊥,且DO ,SP ⊂平面BOD ,SP DO ∴ .·······························4分又因为SP ⊄平面ACD ,DO ⊂平面ACD ,SP ∴ 平面ACD .······················5分

解:(2)B DMN D BMN V V --= 且三棱锥D BMN -的高为定值,

BMN S ∴△最大时,三棱锥B DMN -的体积取得最大值.··········································6分设AM BN x ==

(0x ≤≤)

()22111sin )sin 3sin 222BMN S BM BN MBN x x MBN x a MBN ⎡⎤∴=⋅⋅∠=-∠=--+∠⎢⎥⎣⎦

△又sin MBN ∠ 为定值,

当x =时,BMN S △最大,即三棱锥B DMN -的体积最大.

此时M ,N 分别是AB ,BC 上的中点.···························································7分DA DC = ,BA BC =,DO AC ∴⊥,BO AC ⊥.········································8分

以O 为坐标原点,OA ,OB ,OD 分别为x ,y ,z 轴的正方向建立空间直角坐标系Oxyz ,

则(200)A a ,

,(00)B ,,(200)C a -,

,(00)D ,

,(0)M a ,

()

0N a =-,

,()DM a =- ,(200)NM a = ,

,(20)DA a =- ,

,(20)AB a =- ,.··················································································9分设平面DMN 的一个法向量为1111()x y z =,n .

00DM NM ⎧⋅=⎪∴⎨⋅=⎪⎩ ,n

n 1111020ax ax ⎧+-=⎪∴⎨=⎪

⎩,取11z =,则12y =,10x =,

∴平面DMN 的一个法向量为1(021)=,n .····················································10分设平面DAB 的一个法向量为2222()x y z =,n .

00DA AB ⎧⋅=⎪∴⎨⋅=⎪⎩ ,n

n 22222020ax ax ⎧-=⎪∴⎨-+=⎪⎩,①,

取2x =221y z ==,

∴平面DAB

的一个法向量为211)=n .···················································11分

则12121235cos 10

⋅<>==,n n n n n n .所以平面DAB 与平面DMN

所成锐二面角的余弦值为

10.································12分解法三:

(1) 明:连接DO .

设4EH a =

,则EF =

,DO BO ==

,AB BC ==,

翻折后的4BD DE FB a =+=.·············································································1分DA DC = ,BA BC =,DO AC ∴⊥,BO AC ⊥.···········································2分222BD DO BO =+ ,DO BO ∴⊥.···································································4分

以O 为坐标原点,OA ,OB ,OD 分别为x ,y ,z 轴的正方向建立空间直角坐标系Oxyz ,

则(000)O ,

,(00)B ,

,(00)D ,

,(0)S

,(00)P ,.5分

∴(00)PS = ,.

取平面DAC

的一个法向量为(00)OB = ,,··················································6分

0PS OB ⋅= 且SP ⊄平面ACD ,

SP ∴ 平面ACD . (7)

(2)B DMN D BMN V V --= 且三棱锥D BMN -的高为定值,

BMN S ∴△最大时,三棱锥B DMN -的体积取得最大值.···············································8分设AM BN x ==

(0x ≤≤)

()22111sin )sin 3sin 222BMN S BM BN MBN x x MBN x a MBN ⎡⎤∴=⋅⋅∠=-∠=--+∠⎢⎥⎣⎦△又sin MBN ∠ 为定值,

当x =时,BMN S △最大,即三棱锥B DMN -的体积最大.

此时M ,N 分别是AB ,BC 上的中点.·································································9分由(1)得(200)A a ,,(200)C a -,

,(0)M a ,

,()0N a -,

,()DM a =- ,(200)NM a = ,

,(20)DA a =- ,

,(20)AB a =- ,.设平面DMN 的一个法向量为1111()x y z =,n .

00DM NM ⎧⋅=⎪∴⎨⋅=⎪⎩ ,n

n 1111020ax ax ⎧+-=⎪∴⎨=⎪

⎩,取11z =,则12y =,10x =,

∴平面DMN 的一个法向量为1(021)=,n .··························································10分设平面DAB 的一个法向量为2222()x y z =,n .

00DA AB ⎧⋅=⎪∴⎨⋅=⎪⎩ ,n

n 22222020ax ax ⎧-=⎪∴⎨-+=⎪⎩,

取2x =221y z ==,

∴平面DAB

的一个法向量为211)=n .·························································11分

则12121235cos 10

⋅<>===,n n n n n n .所以平面DAB 与平面DMN 所成锐二面角的余弦值为

3510.······································12分

22.(本小题满分12分)

解:(1)设()P x y ,

,由已知得:()0PA y k x x -=≠

,()0PB y k x x +=≠,1分则有3332

y y x x +⋅=-,·········································································2分化简得:()22

1032

y x x +=≠,··········································································3分由椭圆的定义可知,存在定点()101F -,()201F ,使得12PF PF +为定值.············4分

(2)由于C ,D ,E 在τ上,所以AC ,AD ,AE 斜率存在,

由条件,011AD AC AD AE AE AC k k k k k k +=⎫⇒⋅=⎬⋅=-⎭

.······························································5分设:DE l y kx m =+,()11D x kx m +,()22E x kx m +,联立2212

3y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得()22326x kx m ++=,()222234260k x kmx m +++-=,..................................................................7分由韦达定理12221224232623km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, (8)

(

1212

1AD AE k k kx m kx m x x ⋅=⇔++=(

)((

)(22121210

k x x k m x x m ⇔-+-++-=

展开222222222222226426390k m m k k m k m k m k m m --+-++-++-+=··10

2226390

m m ⇒-++-+

=2150m ⇒-+=.

解得m =

(舍去)或.··········································································11分

所以过定点()0,.···················································································12分

文档

2019-2020学年福建省泉州市高二上学期期末教学质量跟踪监测数学答案

保密★启用前泉州市普通高中2019-2020学年度上学期教学质量跟踪检测数学(空间坐标系、空间向量、直线与圆、圆锥曲线、数列)参及评分标准一、单项选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填在答题卡对应题号的位置上.题号123456710答案CBCDACCDDB8.选D.解析:因为00()Pxy,到焦点的距离02dy=+,则0022yy+=,解得02y=.9.选D.解析:因为直线0=+yx与直线02=++yx互相平行,
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top