
一、选择题
1.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,这个长方形的面积为( )
A.45 B.48 C.63 D.
【答案】C
【解析】
【分析】
由小正方形的边长为1厘米,设这7个正方形中最大的一个边长为x厘米,其余几个边长分别是x-1、x-2、x-3,根据长方形中几个正方形的排列情况,列方程求出最大正方形的边长,从而求得长方形长和宽,进而求出长方形的面积.
【详解】
因为小正方形边长为1厘米,
设这7个正方形中最大的一个边长为x厘米,
因为图中最小正方形边长是1厘米,
所以其余的正方形边长分别为x−1,x−2,x−3,
3(x-3)-1=x
解得:x=5;
所以长方形的长为x+x−1=5+5-1=9,宽为x-1+x−2=5-1+5-2=7
长方形的面积为9×7=63(平方厘米);
故选:C
【点睛】
本题考查了对拼组图形面积的计算能力,利用了正方向的性质和长方形面积的计算公式.
2.如图,四边形是菱形,,,则的长度为( )
A. B. C.4 D.2
【答案】A
【解析】
【分析】
由菱形的性质,得到AC⊥BD,由直角三角形的性质,得到BO=1,BC=2,根据勾股定理求出CO,即可求出AC的长度.
【详解】
解,如图,
∵四边形是菱形,
∴AC⊥BD,AO=CO,BO=DO,
∵,
∴BO=1,
在Rt△OBC中,,
∴BC=2,
∴;
∴;
故选:A.
【点睛】
本题考查了菱形的性质,勾股定理解直角三角形,解题的关键是熟练掌握菱形的性质,利用勾股定理求出OC的长度.
3.如图1,点F从菱形ABCD的项点A出发,沿A-D-B以1cm/s的速度匀速运动到点B.图2是点F运动时,△FBC的面积y (m2)随时间x (s)变化的关系图象,则a的值为( )
A.5 B.2 C. D.2
【答案】C
【解析】
【分析】
过点作于点由图象可知,点由点到点用时为,的面积为.求出DE=2,再由图像得,进而求出BE=1,再在根据勾股定理构造方程,即可求解.
【详解】
解:过点作于点
由图象可知,点由点到点用时为,的面积为.
由图像得,当点从到时,用
中,
∵四边形是菱形,
,
中,
解得
故选:.
【点睛】
本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.
4.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是( )
A. B. C. D.
【答案】B
【解析】
【分析】
首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.
【详解】
∵四边形ABCD为正方形,
∴BA=AD,∠BAD=90°,
∵DE⊥AM于点E,BF⊥AM于点F,
∴∠AFB=90°,∠DEA=90°,
∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,
∴∠ABF=∠EAD,
在△ABF和△DEA中
∴△ABF≌△DEA(AAS),
∴BF=AE;
设AE=x,则BF=x,DE=AF=1,
∵四边形ABED的面积为6,
∴,解得x1=3,x2=﹣4(舍去),
∴EF=x﹣1=2,
在Rt△BEF中,,
∴.
故选B.
【点睛】
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.
5.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点
为顶点画平行四边形,则第四个顶点不可能在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】C
【解析】
A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C
6.一个多边形的每个内角均为108º,则这个多边形是( )
A.七边形 B.六边形 C.五边形 D.四边形
【答案】C
【解析】
试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360
÷72=5(边).
考点:⒈多边形的内角和;⒉多边形的外角和.
7.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是( )
A.3 B.4 C.5 D.6
【答案】C
【解析】
【分析】
先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可.
【详解】
解:如图
∵四边形ABCD是菱形,对角线AC=6,BD=8,
∴AB==5,
作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,
∵AC是∠DAB的平分线,E是AB的中点,
∴E′在AD上,且E′是AD的中点,
∵AD=AB,
∴AE=AE′,
∵F是BC的中点,
∴E′F=AB=5.
故选C.
8.如图,在矩形中, 将其折叠使落在对角线上,得到折痕那么的长度为( )
A. B. C. D.
【答案】C
【解析】
【分析】
由勾股定理求出AC的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x,则CE=,利用勾股定理,即可求出x的值,得到BE的长度.
【详解】
解:在矩形中,,
∴∠B=90°,
∴,
由折叠的性质,得AF=AB=3,BE=EF,
∴CF=53=2,
在Rt△CEF中,设BE=EF=x,则CE=,
由勾股定理,得:,
解得:;
∴.
故选:C.
【点睛】
本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE的长度.
9.如图,小莹用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,BC长为10cm.当小莹折叠时,顶点D落在BC边上的点F处(折痕为AE).则此时EC=( )cm
A.4 B. C. D.3
【答案】D
【解析】
【分析】
根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到:42+x2=(8﹣x)2,然后解方程即可.
【详解】
解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.
∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),
∴AF=AD=10,DE=EF,
在Rt△ABF中,AB=8,AF=10,∴BF=
∴CF=BC﹣BF=4.
设CE=x,则DE=EF=8﹣x,
在Rt△CEF中,∵CF2+CE2=EF2,
∴42+x2=(8﹣x)2,解得x=3
∴EC的长为3cm.
故选:D
【点睛】
本题考查了折叠的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠的性质和矩形的性质,根据勾股定理得出方程是解题关键.
10.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为( )
A.10 B.12 C.16 D.18
【答案】C
【解析】
【分析】
首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.
【详解】
作PM⊥AD于M,交BC于N.
则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN
∴S矩形EBNP= S矩形MPFD ,
又∵S△PBE= S矩形EBNP,S△PFD=S矩形MPFD,
∴S△DFP=S△PBE=×2×8=8,
∴S阴=8+8=16,
故选C.
【点睛】
本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.
11.在四边形ABCD中,AD∥BC,要使四边形ABCD是平行四边形,可添加的条件不正确的是( )
A.AB∥CD B.∠B=∠D C.AD=BC D.AB=CD
【答案】D
【解析】
【分析】
根据平行四边形的判定解答即可.
【详解】
∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,故A正确;
∵AD∥BC,AD=BC,
∴四边形ABCD是平行四边形,故C正确;
∵AD∥BC,
∴∠D+∠C=180°,
∵∠B=∠D,
∴∠B+C=180°,
∴AB∥CD,
∴四边形ABCD是平行四边形,故B正确;
故选:D.
【点睛】
此题考查平行四边形的判定,解题关键是根据平行四边形的判定解答.
12.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P恰好为AC的中点时,PQ的长为( )
A.2 B.4 C.2 D.4
【答案】C
【解析】
【分析】
点P、Q的速度比为3:,根据x=2,y=6,确定P、Q运动的速度,即可求解.
【详解】
解:设AB=a,∠C=30°,则AC=2a,BC=a,
设P、Q同时到达的时间为T,
则点P的速度为,点Q的速度为,故点P、Q的速度比为3:,
故设点P、Q的速度分别为:3v、v,
由图2知,当x=2时,y=6,此时点P到达点A的位置,即AB=2×3v=6v,
BQ=2×v=2v,
y=AB×BQ=6v×2v=6,解得:v=1,
故点P、Q的速度分别为:3,,AB=6v=6=a,
则AC=12,BC=6,
如图当点P在AC的中点时,PC=6,
此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,
则BQ=x=4,CQ=BC﹣BQ=6﹣4=2,
过点P作PH⊥BC于点H,
PC=6,则PH=PCsinC=6×=3,同理CH=3,则HQ=CH﹣CQ=3﹣2=,
PQ===2,
故选:C.
【点睛】
本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
13.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为( )
A.40 B.24 C.20 D.15
【答案】B
【解析】
【分析】
根据等腰三角形的性质得到AC⊥BD,∠BAO=∠DAO,得到AD=CD,推出四边形ABCD是菱形,根据勾股定理得到AO=3,于是得到结论.
【详解】
∵AB=AD,点O是BD的中点,
∴AC⊥BD,∠BAO=∠DAO,
∵∠ABD=∠CDB,
∴AB∥CD,
∴∠BAC=∠ACD,
∴∠DAC=∠ACD,
∴AD=CD,
∴AB=CD,
∴四边形ABCD是菱形,
∵AB=5,BOBD=4,
∴AO=3,
∴AC=2AO=6,
∴四边形ABCD的面积6×8=24,
故选:B.
【点睛】
本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.
14.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于( )
A. B. C. D.
【答案】A
【解析】
试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.
试题解析:∵四边形MBND是菱形,
∴MD=MB.
∵四边形ABCD是矩形,
∴∠A=90°.
设AB=a,AM=b,则MB=2a-b,(a、b均为正数).
在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,
解得a=,
∴MD=MB=2a-b=,
∴.
故选A.
考点:1.矩形的性质;2.勾股定理;3.菱形的性质.
15.如图,在菱形中,,的垂直平分线交对角线于点,垂足为,连接、,则的度数是( )
A. B. C. D.
【答案】A
【解析】
【分析】
首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题;
【详解】
∵四边形ABCD是菱形,
∴∠ACD=∠ACB=∠BCD=25°,
∵EF垂直平分线段BC,
∴FB=FC,
∴∠FBC=∠FCB=25°,
∴∠CFB=180°-25°-25°=130°,
根据对称性可知:∠CFD=∠CFB=130°,
故选:A.
【点睛】
此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
16.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为( )
A.6cm B.4cm C.3cm D.2cm
【答案】D
【解析】
分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC-BE,代入数据进行计算即可得解.
详解:∵沿AE对折点B落在边AD上的点B1处,
∴∠B=∠AB1E=90°,AB=AB1,
又∵∠BAD=90°,
∴四边形ABEB1是正方形,
∴BE=AB=6cm,
∴CE=BC-BE=8-6=2cm.
故选:D.
点睛:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.
17.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是( )
A.110° B.120° C.140° D.150°
【答案】B
【解析】
【详解】
解:∵AD∥BC,
∴∠DEF=∠EFB=20°,
图b中∠GFC=180°-2∠EFG=140°,
在图c中∠CFE=∠GFC-∠EFG=120°,
故选B.
18.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,将边长为4的菱形的边固定在轴上,开始时,现把菱形向左推,使点落在轴正半轴上的点处,则下列说法中错误的是( )
A.点的坐标为 B.
C.点移动的路径长度为4个单位长度 D.垂直平分
【答案】C
【解析】
【分析】
先证明四边形OBC′D′是正方形,且边长=4,即可判断A;由平行线的性质得∠OBC的度数,进而得到,即可判断B;根据弧长公式,求出点移动的路径长度,即可判断C;证明CD⊥BC′,BC′=BC=2BE,即可判断D.
【详解】
∵四边形OBCD是菱形,
∴OB=BC=CD=OD,
∴OB=BC′=C′D′=OD′,
∵∠BOD′=90°,
∴四边形OBC′D′是正方形,且边长=4,
∴点的坐标为,故A不符合题意.
∵,OD∥BC,
∴∠OBC=180°-30°=150°,
∵∠OBC′=90°,
∴,故B不符合题意.
∵点移动的路径是以OD长为半径,圆心角为∠DOD′=90°-30°=60°的弧长,
∴点移动的路径长度==,故C符合题意.
设CD与BC′交于点E,
∵在菱形OBCD中,∠C=,
∵,
∴∠BEC=180°-60°-30°=90°,即CD⊥BC′,
∴BC′=BC=2BE,
∴垂直平分,故D不符合题意.
故先C.
【点睛】
本题主要考查菱形的性质,正方形的判定和性质以及点的坐标,熟练掌握菱形的性质和正方形性质,含30°角的直角三角形的性质,是解题的关键.
19.下列结论正确的是( )
A.平行四边形是轴对称图形 B.平行四边形的对角线相等
C.平行四边形的对边平行且相等 D.平行四边形的对角互补,邻角相等
【答案】C
【解析】
【分析】
分别利用平行四边形的性质和判定逐项判断即可.
【详解】
A、平行四边形不一定是轴对称图形,故A错误;
B、平行四边形的对角线不相等,故B错误;
C、平行四边形的对边平行且相等,故C正确;
D、平行四边形的对角相等,邻角互补,故D错误.
故选:C.
【点睛】
此题考查平行四边形的性质,掌握特殊平行四边形与一般平行四边形的区别是解题的关键.
20.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )
A.7 B.7或8 C.8或9 D.7或8或9
【答案】D
【解析】
试题分析:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.
则原多边形的边数为7或8或9.故选D.
考点:多边形内角与外角.
