最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

黄冈中学初中数学二次函数知识点汇总

来源:动视网 责编:小OO 时间:2025-09-27 00:19:29
文档

黄冈中学初中数学二次函数知识点汇总

中考数学二次函数知识点1.定义一般地,如果是常数,,那么叫做的二次函数.2.二次函数的性质(1)抛物线的顶点是坐标原点,对称轴是轴.(2)函数的图像与的符号关系.①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点.(3)顶点是坐标原点,对称轴是轴的抛物线的解析式形式为.3.二次函数的图像是对称轴平行于(包括重合)轴的抛物线.4.二次函数用配方法可化成:的形式,其中.5.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤.6.抛物线的三要素:开口方向、对称轴、顶点.
推荐度:
导读中考数学二次函数知识点1.定义一般地,如果是常数,,那么叫做的二次函数.2.二次函数的性质(1)抛物线的顶点是坐标原点,对称轴是轴.(2)函数的图像与的符号关系.①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点.(3)顶点是坐标原点,对称轴是轴的抛物线的解析式形式为.3.二次函数的图像是对称轴平行于(包括重合)轴的抛物线.4.二次函数用配方法可化成:的形式,其中.5.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤.6.抛物线的三要素:开口方向、对称轴、顶点.
中考数学二次函数知识点

1.定义 一般地,如果是常数,,那么叫做的二次函数.

2.二次函数的性质

(1)抛物线的顶点是坐标原点,对称轴是轴.

(2)函数的图像与的符号关系.

    ①当时抛物线开口向上顶点为其最低点;

②当时抛物线开口向下顶点为其最高点.

(3)顶点是坐标原点,对称轴是轴的抛物线的解析式形式为.

3.二次函数的图像是对称轴平行于(包括重合)轴的抛物线.

4.二次函数用配方法可化成:的形式,其中.

5.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤.

6.抛物线的三要素:开口方向、对称轴、顶点.

  ①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;

相等,抛物线的开口大小、形状相同.

  ②平行于轴(或重合)的直线记作.特别地,轴记作直线.

7.顶点决定抛物线位置 不同的二次函数,如果相同,那抛物线的开口方向、开口大小相同,顶点位置不同.

8.求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是,对称轴是直线.

 (2)配方法 将抛物线解析式化为的形式,得到顶点为(,),对称轴是直线.

 (3)运用抛物线的对称性 由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.

9.抛物线中,的作用

 (1)决定开口方向及开口大小,这与中的完全一样. a 的绝对值越大,抛物线的开口越小。

 (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线

,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.

 (3)的大小决定抛物线与轴交点的位置.

      当时,,∴抛物线与轴有且只有一个交点(0,):

      ①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.

      以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.

10.几种特殊的二次函数的图像特征如下:

函数解析式开口方向对称轴顶点坐标

当时

开口向上

当时

开口向下

(轴)

(0,0)

(轴)

(0,)

(,0)

(,)

()

11.用待定系数法求二次函数的解析式

 (1)一般式:.已知图像上三点或三对、的值,通常选择一般式.

 (2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.

 (3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.

12.直线与抛物线的交点(1)轴与抛物线得交点为(0,).

 (2)与轴平行的直线与抛物线有且只有一个交点(,).

 (3)抛物线与轴的交点

二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可由对应的一元二次方程根的判别式判定:①有两个交点抛物线与轴相交;②有一个交点(顶点在轴上)抛物线与轴相切:③没有交点抛物线与轴相离.

  (4)平行于轴的直线与抛物线的交点

      同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.

  (5)一次函数的图像与二次函数的图像的交点,由方程组  的解的数目来确定:①方程组有两组不同的解时与有两个交点; ②方程组只有一组解时与只有一个交点;③方程组无解时与没有交点.

  (6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故

一次函数与反比例函数

考点一、平面直角坐标系    (3分)

注意:x轴和y轴上的点,不属于任何象限。

考点二、不同位置的点的坐标的特征    (3分)

3、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线上x与y相等

点P(x,y)在第二、四象限夹角平分线上x与y互为相反数

5、关于x轴、y轴或远点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数

点P与点p’关于原点对称横、纵坐标均互为相反数

6、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于

(2)点P(x,y)到y轴的距离等于

(3)点P(x,y)到原点的距离等于

考点三、函数及其相关概念    (3~8分)

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种方法叫解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

考点四、正比例函数和一次函数    (3~10分)

    1、正比例函数和一次函数的概念

一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。

特别地,当一次函数中的b为0时,(k为常数,k0)中的y叫做x的正比例函数。

2、一次函数的图像

所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征 一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

4、正比例函数的性质 一般地,正比例函数有下列性质:

(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;

(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。

5、一次函数的性质,一般地,一次函数有下列性质:

(1)当k>0时,y随x的增大而增大

(2)当k<0时,y随x的增大而减小

6、正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。

确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。

考点五、反比例函数    (3~10分)

    1、反比例函数的概念

一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数的性质

①当k>0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。

②当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x 的增大而增大。

4、反比例函数解析式的确定

确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

5、反比例函数中反比例系数的几何意义

如下图,过反比例函数图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PMPN=。  。

二次函数

考点一、二次函数的概念和图像    (3~8分)

    1、二次函数的概念

一般地,如果,那么y叫做x 的二次函数。

叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。

抛物线的主要特征

①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法

五点法:

(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴

(2)求抛物线与坐标轴的交点:

当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。

考点二、二次函数的解析式    (10~16分)

二次函数的解析式有三种形式:

(1)一般式: 

(2)顶点式: 

(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

考点三、二次函数的最值    (10分)如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,。

如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当时,,当时,;如果在此范围内,y随x的增大而减小,则当时,,当时,。

考点四、二次函数的性质    (6~14分)

    1、二次函数的性质

2、二次函数中,的含义:表示开口方向: >0时,抛物线开口向上, <0时,抛物线开口向下

与对称轴有关:对称轴为x=

表示抛物线与y轴的交点坐标:(0,)

3、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

因此一元二次方程中的,在二次函数中表示图像与x轴是否有交点。

>0时,图像与x轴有两个交点; =0时,图像与x轴有一个交点; <0时,图像与x轴没有交点。

补充:

1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)

                                                                   y

如图:点A坐标为(x1,y1)点B坐标为(x2,y2)

则AB间的距离,即线段AB的长度为             A

                                                                   

0           x

                                                             B 

2、函数平移规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)上加下减,左加右减

文档

黄冈中学初中数学二次函数知识点汇总

中考数学二次函数知识点1.定义一般地,如果是常数,,那么叫做的二次函数.2.二次函数的性质(1)抛物线的顶点是坐标原点,对称轴是轴.(2)函数的图像与的符号关系.①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点.(3)顶点是坐标原点,对称轴是轴的抛物线的解析式形式为.3.二次函数的图像是对称轴平行于(包括重合)轴的抛物线.4.二次函数用配方法可化成:的形式,其中.5.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤.6.抛物线的三要素:开口方向、对称轴、顶点.
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top