
本系统采用了热释电红外传感器,它的制作简单、成本低、安装比较方便,而且防盗性能比较稳定,抗干扰能力强、灵敏度高、安全可靠。这种防盗器安装隐蔽,不易被盗贼发现。本设计电路主要包括信号放大电路、比较电路、音响报警电路、开机延时电路和12V电源电路组成。分析人体红外线感应报警器的各部分功能电路原理,运用Protel 99se完成了原理图的绘制,并运用Multisim 10仿真调试得出电路报警的相关参数。
关键词:红外线 电压比较器 放大电路 报警器
第一章 绪论
1.1设计概述
随着电子技术的发展,人类不断研究,不断创新纪录,人们自身的安防意识也在逐渐增强。红外线具有隐蔽性,在露天防护的地方设计一束红外线可以方便地检测到是否有人出入。此类装置设计的要点:其一是能有效判断是否有人员进入;其二是尽可能大地增加防护范围。
该报警器能探测人体发出的红外线,当人进入报警器的监视区域内,即可发出报警声,适用于家庭、办公室、仓库、实验室等比较重要场合防盗报警。本设计是在指导老师给定课题的基础上经过分析利用热释电红外线传感器探测人体辐射出的红外线信号原理设计出来的人体红外线感应报警器。内容广泛,灵活应用。
1.2设计背景
随着时代的不断进步,人们对自己所处环境的安全性提出了更高的要求,尤其是在家居安全方面,不得不时刻留意那些不速之客。这里所设计的被动式红外报警器则采用了美国的传感元件——热释电红外传感器。这种热释电红外传感器能以非接触形式检测出人体辐射的红外线,并将其转变为电压信号,同时,它还能鉴别出运动的生物与其它非生物。热释电红外传感器既可用于防盗报警装置,也可以用于自动控制、接近开关、遥测等领域。用它制作的防盗报警器与目前市场上销售的许多防盗报警器材相比,具有如下特点:
◆不需要用红外线或电磁波等发射源;
◆灵敏度高、控制范围大;
◆隐蔽性好,可流动安装。
1.3设计要求
◆熟悉电路的工作原理。
◆掌握该电路中元器件的识别方法。
◆掌握电路的调试方法。
◆熟悉电路简单的故障分析方法。
◆论文符合其格式、字数的基本要求,内容要求充实、作图严谨规范等。
◆详细说明设计方案,并计算元件参数。
1.4设计意义
掌握红外探测防盗器的原理及设计制作与仿真调试,熟悉实用电路设计的一般过程。训练及提高学生综合运用所学知识进行电路设计的原理仿真能力。加强对一些无人场所的防盗报警,以及对一些危险地带生命迹象的探测。
第二章 系统方案设计与研究
2.1方案设计
方案一:基于单片机的红外感应报警器。模块划分为数据采集、键盘控制、报警等子模块。电路结构可划分为:热释电红外传感器、报警器、单片机控制电路、LED控制电路及相关的控制管理软件组成。
基于单片机的红外感应报警器特点是用户终端完成信息采集、处理、数据传送、功能设定、本地报警等功能。
方案二:利用模拟电子电路构成被动红外线感应报警器。系统主要有红外线传感器、信号放大电路、电压比较器、开机延时、音响报警延时和12V电源电路组成。
被动红外线感应报警器的红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。
方案三:利用模拟电子电路构成主动红外入侵报警器。主要由发射机和接收机组成,发射机是由电源、发光源和光学系统组成。接收机是由光学系统、光电传感器、放大器、信号处理器等部分组成。
主动红外报警器是当有人入侵该警戒线时,红外光束被遮挡,接收机收到的红外信号发生变化,提取这一变化,经放大和适当处理,控制器发出的报警信号。目前此类报警器有二光束、三光束还有多光束的红外栅栏等。一般应用在周界防范居多,最大的优点就是防范距离远。
2.2方案选定
通过比较由于方案一单片机芯片相对于模拟电子器件而言成本较为昂贵,并且单片机的软件编程对于时间的处理不够准确;方案三的主动式红外线报警器的硬件电路相比于方案二较为复杂。综上所述选择方案二:由模拟电子电路构成人体红外线感应报警器电路。主要由电路由红外线传感器、信号放大电路、电压比较器、开机延时、音响报警延时和12V电源电路组成。组成框图如下:
图2-1 人体红外线感应报警器组成框图
第三章 单元电路设计
3.1红外线传感器
红外线传感器IC1采用进口器件Q74,波长为9-10um。一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线。IC1探测到前方人体辐射出的红外线信号时,由IC1的②脚输出微弱的电信号进入放大电路,经过放大比较之后可以蜂鸣器发出响声。
3.1.1热释电红外线传感器的概述
主要是由一种高热电系数的材料,如锆钛酸铅系陶瓷、钽酸锂、硫酸三甘钛等制成尺寸为2*1mm的探测元件。在每个探测器内装入一个或两个探测元件,并将两个探测元件以反极性串联,以抑制由于自身温度升高而产生的干扰。由探测元件将探测并接收到的红外辐射转变成微弱的电压信号,经装在探头内的场效应管放大后向外输出。为了提高探测器的探测灵敏度以增大探测距离,一般在探测器的前方装设一个菲涅尔透镜,该透镜用透明塑料制成,将透镜的上、下两部分各分成若干等份,制成一种具有特殊光学系统的透镜,它和放大电路相配合,可将信号放大70分贝以上,这样就可以测出10~20米范围内人的行动。
3.1.2热释电红外线传感器的优缺点
1.优点:
◆本身不发任何类型的辐射
◆器件功耗很小,隐蔽性好
◆价格低廉
2.缺点:
◆容易受各种热源、光源干扰
◆被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收
◆环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵
3.1.3热释电红外线传感器的抗干扰能力
◆防小动物干扰:探测器安装在推荐地使用高度,对探测范围内地面上地小动物,一般不产生报警。
◆抗电磁干扰:探测器的抗电磁波干扰性能符合GB10408中4.6.1要求,一般手机电磁干扰不会引起误报。
◆抗灯光干扰:探测器在正常灵敏度的范围内,受3米外H4卤素灯透过玻璃照射,不产生报警。
3.1.4菲尼尔透镜
菲涅尔透镜 (Fresnel lens) 多是由聚烯烃材料注压而成的薄片,也有玻璃制作的,镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是利用光的干涉及扰射和根据相对灵敏度和接收角度要求来设计的,透镜的要求很高,一片优质的透镜必须是表面光洁,纹理清晰,其厚度随用途而变,多在1mm左右,特性为面积较大,厚度薄及侦测距离远。
3.2信号放大电路
图3-1 信号放大电路图
信号放大电路如图3-1,VT1和运算放大器LM358等组成放大电路,由IC1的②脚输出微弱的电信号,经三极管VT1组成的共发射极放大电路进行第一级放大,再通过C2耦合到运算放大器IC2A中进行高增益、低噪声的同相比例放大,此时由IC2A①脚输出的信号已足够强,输入电压比较电路。
3.2.1放大电路的概述
放大”的本质是实现能量的控制,即能量的转换:用能量比较小的输入信号来控制另一个能源,使输出端的负载上得到能量比较大的信号。放大的对象是变化量,放大的前提是传输不失真。放大电路的基本形式有3种:共发射极放大电路,共基极放大电路和共集电极放大电路。在构成多级放大器时,这几种电路常常需要相互组合使用。
3.2.2放大电路的分析
反馈指将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程。反馈可分为负反馈和正反馈。前者使输出起到与输入相反的作用,使系统输出与系统目标的误差减小,系统趋于稳定;后者使输出起到与输入相似的作用,使系统偏差不断增大,使系统振荡,可以放大控制作用。本电路采用的是由R2构成了电压并联负反馈电路,此电路还是共发射极放大电路。
共发射极放大电路具有以下特点:
◆输入信号与输出信号反相;
◆无电压放大作用;
◆有电流放大作用;
◆功率增益最高(与共集电极、共基极比较);
◆适用于电压放大与功率放大电路。
3.2.3集成运放的概述
集成运算放大器简称集成运放,是由多级直接耦合放大电路组成的高增益模拟集成电路。它的增益高,输入电阻大,输出电阻低,共模抑制比高,失调与飘移小,而且还具有输入电压为零时输出电压亦为零的特点,适用于正,负两种极性信号的输入和输出。运算放大器除具有十、一输人端和输出端外,还有十、一电源供电端、外接补偿电路端、调零端、相位补偿端、公共接地端及其他附加端等。它的放大倍数取决于外接反馈电阻,这给使用带来很大方便。
3.2.4集成运放的特点
◆集成运放采用直接耦合放大器,对直流信号和交流信号都有放大作用;
◆为克服零飘现象,提高共模抑制比,输入端全部采用差分放大电路,并采用恒流源供电;
◆采用复合管提高电路的增益;
◆电路中的无源器件都采用无源器件来代替。
3.2.5集成运放的传输特性
本电路由R7、R8、C4组成同相比例放大电路。同相比例运算放大器在正常运行的时候,输出电压总是满足使反馈在反向输入端的电压等于同相端的电压(Av= R8/R7+1)。如果在放大器输出端接上负载引起输出电压下降,那么下降的输出电压就会使反馈在反向输入端的电压不等于同相端的电压,于是又会引起输出端的电压回到Av= R8/R7+1的参数。这与反向比例放大器的调整作用原理相同。
3.2.6芯片介绍
芯片一:LM358
1.芯片概述
LM358 内部包括有两个的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。
图3-2 LM358引脚图
2.芯片特点:
◆内部频率补偿
◆直流电压增益高(约100dB)
◆单位增益频带宽(约1MHz)
◆电源电压范围宽:单电源(3—30V);双电源(±1.5一±15V)
◆低功耗电流,适合于电池供电
◆低输入偏流
◆低输入失调电压和失调电流
◆共模输入电压范围宽,包括接地
◆差模输入电压范围宽,等于电源电压范围
◆输出电压摆幅大(0至Vcc-1.5V)
3.电气特性:
◆输入偏置电流45 nA
◆输入失调电流50 nA
◆输入失调电压2.9mV
◆输入共模电压最大值VCC~1.5 V
◆共模抑制比80dB
◆电源抑制比100dB
◆8脚:电源VCC
◆4脚:接地
◆1、7脚:输出端
◆3、5脚:同相输入端
◆2、6脚:反相输入端
芯片二:9014
1.主要参数:
◆集电极最大耗散功率PCM=0.4W
◆集电极最大允许电流ICM=0.1A
◆集电极基极击穿电压BVCBO=50V
◆集电极发射极击穿电压BVCEO=45V
◆发射极基极击穿电压BVEBO=5V
◆集电极发射极饱和压降UCE=0.3V (IC=100mA; IB=5mA)
◆基极发射极饱和压降UBE(sat)=1V (IC=100mA; IB=5mA)
2.主要用途
◆作为低频、低噪声前置放大,应用于电话机、VCD、DVD、电动玩具等电子产品。
3.3电压比较器
图3-3 电压比较电路图
电压比较器如图3-3,IC3A和VD1等作电压比较器,IC3A的第②脚由R10、VD1提供基准电压,U_=R12/R12+R11.当IC2A①脚输出的信号电压到达IC3A的③脚时,两个输入端的电压进行比较, 此时IC3A的①脚由原来的高电平变为低电平。
3.3.1电压比较器的概述
电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。
电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):
◆当”+”输入端电压高于”-”输入端时,电压比较器输出为高电平;
◆当”+”输入端电压低于”-”输入端时,电压比较器输出为低电平。
电压比较器的作用:
◆可用作模拟电路和数字电路的接口;
◆可以用作波形产生和变换电路等;
◆利用简单电压比较器可将正弦波变为同频率的方波或矩形波。
3.3.2比较器的主要指标
◆滞回电压:比较器两个输入端之间的电压在过零时输出状态将发生改变,由于输入端常常叠加有很小的波动电压,这些波动所产生的差模电压会导致比较器输出发生连续变化,为避免输出振荡,新型比较器通常具有几mV的滞回电压。
◆偏置电流:理想的比较器的输入阻抗为无穷大,因此,理论上对输入信号不产生影响,而实际比较器的输入阻抗不可能做到无穷大,输入端有电流经过信号源内阻并流入比较器内部,从而产生额外的压差。偏置电流定义为两个比较器输入电流的中值,用于衡量输入阻抗的影响。
◆超电源摆幅:为进一步优化比较器的工作电压范围,Maxim公司利用NPN管与PNP管相并联的结构作为比较器的输入级,从而使比较器的输入电压得以扩展,这样,其下限可低至最低电平,上限比电源电压还要高出250mV,因而达到超电源摆幅标准。这种比较器的输入端允许有较大的共模电压。
◆漏源电压:由于比较器仅有两个不同的输出状态(零电平或电源电压),且具有满电源摆幅特性的比较器的输出级为射极跟随器,这使得其输入和输出信号仅有极小的压差。该压差取决于比较器内部晶体管饱和状态下的发射结电压,对应于MOSFFET的漏源电压。
◆输出延迟时间:包括信号通过元器件产生的传输延时和信号的上升时间与下降时间,对于高速比较器,设计时需注意不同因素对延迟时间的影响,其中包括温度、容性负载、输入过驱动等的影响。
3.3.3LM393芯片介绍
1.LM393概述
LM393 为双电压比较器,LM393 系列由两个偏移电压指标低达 2.0 的精密电压比较器构成。该产品采用单电源操作设计,且适用电压范围广。该产品也可采用分离式电源,低电耗不受电源电压值影响。本品还有一个特点是,即使是在单电源操作时,其输入共模电压范围也包括接地。LM393 系列可直接与 TTL 及 CMOS 逻辑电路接口。无论时正电源还是负电源操作,当低电耗比标准比较器的优势明显时,LM393 系列便与 MOS 逻辑电路直接接口。
2.芯片特点
◆工作电源电压范围宽,单电源、双电源均可工作,单电源:2~36V,双电源:±1~±18V;
◆消耗电流小,Icc=0.8mA;
◆输入失调电压小,VIO=±2mV;
◆共模输入电压范围宽,Vic=0~Vcc-1.5V;
◆输出与TTL,DTL,MOS,CMOS 等兼容;
◆输出可以用开路集电极连接“或”门;
图3-4 LM393引脚图
3.电气特性
◆8 脚:电源+
◆4 脚:电源-
◆1 脚:比较器 A 输出
◆2脚:比较器 A 反相输入
◆3 脚:比较器 A 同向输入
◆5 脚:比较器 B 同向输入
◆6 脚:比较器 B 反相输入
◆7 脚:比较器B输出
3.4音响报警电路
图3-5 音响报警延时电路图
LM393为报警延时电路,R14和C6组成延时电路,其时间约为1分钟。当IC3A的①脚变为低电平时,C6通过VD2放电,此时IC3B的⑤脚变为低电平它与IC3A的⑥脚基准电压进行比较,当它低于其基准电压时,IC3B的⑦脚变为高电平,VT2 导通,讯响器BL通电发出报警声。人体的红外线信号消失后,IC3A的①脚又恢复高电平输出,此时VD2截止。由于C6两端的电压不能突变, 故通过R14向 C6缓慢充电,当C6两端的电压高于其基准电压时,IC3A的①脚才变为低电平,时间约为1分钟,即持续1分钟报警。
3.5开机延时电路
图3-6 开机延时电路图
如图3-6,由VT3、R20、C8组成开机延时电路,刚开机时电源向C8充电,时间约为1分钟,它的设置主要是防止使用者开机后立即报警,好让使用者有足够的时间离开监视现场,同时可防止停电后又来电时产生误报。
3.6 12V电源电路
由功率为12V 5W的变压器,电桥等组成,为报警电路提供12V的电压源。该装置采用9-12V直流电源供电,由T降压,全桥U整流,C10滤波,检测电路采用78L06供电。本装置交直流两用,自动无间断转换。
图3-7 12V电源电路图
3.6.1直流稳压电源的原理
直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成。
◆电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。
◆整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。
◆滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。
◆稳压电路:稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。
3.6.2三端稳压源
集成三端稳压器是一种串联调整式稳压器,内部设有过热、过流和过压保护电路。它只有三个外引出端(输入端、输出端和公共地端),将整流滤波后的不稳定的直流电压接到集成三端稳压器输入端,经三端稳压器后在输出端得到某一值的稳定的直流电压。
78L06芯片特点:
◆输出电压(V):6.200
◆输出电流最大值(mA):100
◆静态电流最大值(mA):6
◆压差最大值(V):2.300
◆压差典型值(V):1.700
◆输入电压最大值(V):20
◆封装/温度(℃):TO/SOT/0~125
3.7总电路分析
接通电源时,C8、R20、VT3组成开机延时电路时间大约为1分钟。当有感应信号时,信号经过由R2、R3、VT1等组成的共发射极放大电路进行反相放大,放大后的信号送入LM368进行同相比例放大,放大倍数为(1+Rf/R7),得出的信号已经足够大了,再送入LM393的第一级与R10、R11、R13、VD1组成的基准电压进行比较,因为基准电压较小,所以比较器第一级输出为低电平,C6经过VD2放电,当LM393第二级负相输入端的电压低于R15、R16形成的基准电压时,LM393的输出端为高电平,信号经过VT2放大后驱动报警器报警。当感应信号消失时,由于C6的电压不能突变,电源经过R14向电容充电,直到电容上的电压高于基准电压时,报警器才会停止报警,时间大约为1分钟。
电源电路由市电经过降压变压器、桥式整流、电容滤波、稳压后得到稳定的12V电源,再经过三端稳压块78L06形成6V电源向IC器件供电。
第四章 仿真调试
4.1 multisim介绍
Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。Multisim 10的特点:
◆通过直观的电路图捕捉环境, 轻松设计电路
◆通过交互式SPICE仿真, 迅速了解电路行为
◆借助高级电路分析, 理解基本设计特征
◆通过一个工具链, 无缝地集成电路设计和虚拟测试
◆通过改进、整合设计流程, 减少建模错误并缩短上市时间
4.2仿真电压和波形
仿真图(见附录2):
1.感应信号波形
图4-1 感应信号Ui波形图
输入电压为10mV,时基因数为10ms/Div,偏转因数为20mv/Div
2.第一级放大波形及电压
图4-2 第一级放大信号U1波形图
时基因数为10ms/Div,偏转因数为1V/Div
图4-3 第一级放大信号U1电压
3.第二级放大波形及电压
图4-4 第二级放大信号U2波形图
时基因数为10ms/Div,偏转因数为20V/Div
图4-5 第二级放大信号U2电压
4.第一级比较波形
图4-6 第一级比较信号U3波形图
时基因数为10ms/Div,偏转因数为10V/Div
5.第二级比较波形及电压
图4-7 第二级比较信号U4波形图
时基因数为10ms/Div,偏转因数为5V/Div
6.基准电压一、二电压
图4-8 基准电压一
图4-9 基准电压二
7.开机延时
图4-10 开机延时波形图
时基因数为10ms/Div,偏转因数为5V/Div
图4-11 开机时电路的工作状态图
8.报警延时
图4-12 报警延时波形图
时基因数为10ms/Div,偏转因数为5V/Div
图4-13 有感应信号时电路的工作状态图
4.3仿真结果分析
1.三极管的放大倍数
输入电压为10mV,输出电压为U1=687.142mV
Au=U1/ Ui=687.142/10=68.7
2.运放的放大倍数
输入电压为U1=687.142mV,输出电压为U2=20.228V
测试值:Au=U2/ U1=20.228*1000/ 687.142=29.4
理论值:Au=1+R8/ R7=1+30=31
3.基准电压一:
理论值:U1=R12/(R11+R12)*0.7=100/ 110*0.7=0.63V
测量值:U1=551.41mV=0.551V
4.基准电压二:
理论值:U2=R16/(R15+R16)*12V=300/400*6=9V
测量值:U2=8.999V
5.两比较波形对比分析
从图4-6、4-7中可以看出第一级比较输出电压与第二级比较输出总是一高一低,符合电路原理。
6.开机延时
开机延时波形如图4-10、4-11:没有接通电源时电压几乎为零,当接通电源时电源通过R21向C8进行充电,充电时间很快,此时断开电源,电容C8经R20向VT3放电,使VT3导通,不报警,放电时间即为开机延时时间,大约30秒延时。
7.报警延时
报警延时波形如图4-12、4-13:当有人进入时,电路就报警,当人消失后,此时IC3的⑦脚由高电平变为低电平,VD2截至。由于电容C6两端电压不能突变,电源经R14向C6进行充电。当电压超过基准电压时,报警停止。充电时间即为报警延时时间。大约为48秒。
第五章 总结与展望
5.1 总结
从2010年10月,我开始了我的毕业论文工作,时至今日,论文基本完成。从最初的茫然,到慢慢的进入状态,再到对思路逐渐的清晰,整个写作过程难以用语言来表达。历经了几个月的奋战,紧张而又充实的毕业设计终于落下了帷幕。回想这段日子的经历和感受,我感慨万千,在这次毕业设计的过程中,我拥有了无数难忘的回忆和收获。
本设计中所阐述的仅仅是一种简易的红外线感应报警器电路设计。我学习过Protel 99se、Protues、Keil7.6、LabVIEW8.2、VC++6.0等软件。运用相关的理论知识,通过对电路原理的介绍和探究,得出其制作方案与实践应用原理,并重点研究了其相关的核心技术和应用理论。相信,在现实生活中该理论一定能得到很好的应用和更为广阔的发展。
在毕业设计过程中,我也上网查阅了许多资料,掌握了科技文献的检索方法,大大提高了自己获得新知识,新信息的能力。我也深深的体会到,实践必须在充分理解电路原理的基础上,才能做到目标明确,操作准确。我也将许多遗忘的知识又给温习了。这段旅程看似荆棘密布,实则蕴藏着无尽的宝藏。
在这次毕业设计中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。
5.2 展望
在整个论文编写过程中,我学到了新知识,增长了见识。在今后的日子里,我仍然要不断地充实自己,争取在所学领域有所作为。脚踏实地,认真严谨,实事求是的学习态度,不怕困难、坚持不懈、吃苦耐劳的精神是我在这次设计中最大的收益。我想这是一次意志的磨练,是对我实际能力的一次提升,也会对我未来的学习和工作有很大的帮助。
致 谢
在论文完成之际,我首先向关心帮助和指导我的指导老师夏玉红表示衷心的感谢并致以崇高的敬意!
三年的读书生活在这个季节即将划上一个句号,而于我的人生却只是一个逗号,我将面对又一次征程的开始。两年的求学生涯在师长、朋友的大力支持下,走得辛苦却也收获满囊,在论文即将结束之际,思绪万千,心情久久不能平静。
感谢我的所有任课老师,他(她)们治学严谨,学识渊博,思想深邃,视野雄阔,为我营造了一种良好的精神氛围。老师让我不仅学到了扎实的专业知识,还教会了我如何做人,面对问题养成了沉着冷静,努力解决。
还要要感谢的是我的父母,因他们的给予我才能在这校园里完成我的大学梦想,使我的人生阅历提高,增长见识,提高了自己个方面的素质和涵养。也要感谢我的同学。,因为我们团结我们才能高效的完成毕业设计。在未来的日子里,我会更加努力的学习和工作,不辜负父母对我的殷殷期望!我一定会好好孝敬和报答他们!
从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!
最后,衷心地感谢在百忙之中评阅论文和参加答辩的各位专家、教授!
参考文献
[1] 国兵,李永冰.模拟电子技术[M].天津大学出版社(第1版). 2008.
[2] 康华光主编.《电子技术基础》(第四版).北京:高等教育出版社.1999.
[3] 孙承清.模拟电子技术[M].中国矿业大学出版社.1985.
[4] 何希才.传感器及其应用实例[D].北京:机械工业出版社.2004.
[5] 方佩敏.新型开关电源三端稳压块K78XX系列[J].今日电子.2008年(11):8—10(完整的).
[6] 陈永甫主编.外探测与控制电路[P].北京:人民邮电出版社.2004.
[7] 薛学明.稳压电源及电路实例[J].北京:中国铁道出版社.1990.
[8] 胡家忠.实用电子电路手册[D].湖北科技出版社.1987.
[9] 薛学明.稳压电源及电路实例[M].北京:中国铁道出版社.1990
[10] 梁廷贵.现代集成电路使用手册[M].科技技术文献出版社.2003.
[11] 宋文绪. 传感器与检测技术[M]. 北京: 高等教育出版社. 2004.
[12] 康华光. 电子技术基础(模拟部分)[M]. 北京: 高等教育出版社. 2004.
附录1 元件清单
| 编号 | 名称 | 型号 | 数 量 | 编号 | 名称 | 型号 | 数 量 |
| R1 | 电阻 | 47K | 1 | C10 | 电解电容 | 470u/25V | 1 |
| R2 | 电阻 | 1M | 1 | C11 | 涤纶电容 | 0.1u | 1 |
| R3 | 电阻 | 1K | 1 | VD1-VD5 | 整流二极管 | IN4001 | 5 |
| R4 | 电阻 | 4.7K | 1 | U | 全桥 | 2A/50V | 1 |
| R5、R6、R9、R12、R13、R15 | 电阻 | 100K | 6 | VT1 | 晶体三极管 | 9014 | 1 |
| R7、R10、R11、 R17 | 电阻 | 10K | 4 | VT2 | 晶体三极管 | MPSA13 | 1 |
| R8、R16 | 电阻 | 300K | 2 | VT3 | 晶体三极管 | 8050 | 1 |
| R14 | 电阻 | 470K | 1 | IC1 | 红外线传感器 | Q74 | 1 |
| R18 | 电阻 | 2.4K | 1 | IC2 | 运算放大器 | LM358 | 1 |
| R19 | 电阻 | 220Ω | 1 | IC3 | 比较器 | LM393 | 1 |
| R20 | 电阻 | 560K | 1 | IC4 | 三端稳压器 | 78L06 | 1 |
| C1、C2、C6、C8、C9 | 电解电容 | 47u/16V | 5 | BL | 电磁讯响器 | U=12V | 1 |
| C3、C5 | 电解电容 | 22u/16V | 2 | T | 电源变压器 | 12V 5W | 1 |
| C4 | 涤纶电容 | 0.01u | 1 | S | 钮子开关 | 1 | |
| C7 | 电解电容 | 220u/16V | 1 |
仿真电路图
