最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

如何画一个 圆 三等分?? 最好有图解!

来源:动视网 责编:小OO 时间:2024-10-25 08:20:49
文档

如何画一个 圆 三等分?? 最好有图解!

过圆心画两条垂直相交的直线,过半径做垂直评分线。取与圆周的一个交点,同理取过圆心另一垂直评分线圆周上的交点,三点链接圆心就是三等分。三等分点是把一条线段平均分成三等分的点。以该线段为中线做一任意三角形,画出三角形的另一条中线,那么两中线交于点A,以该点为圆心,该线段到三角形底边的距离为半径作圆,交于该线段于点B,则点A,B就是该线段的三等分点。扩展资料。等分圆周是指利用直尺和圆规将圆周n等分,这是一个古老的数学问题。古代希腊数学家利用尺规作图可将圆周分成3,4,5,15等分,并进而将分点逐次倍增,将圆周无限等分。高斯(Gauss,1777-1855)曾证明可用尺规作图将圆周17等分,因而找到了正十七边形的尺规作图法。为此,后人把这一图形铭刻在高斯纪念碑上。
推荐度:
导读过圆心画两条垂直相交的直线,过半径做垂直评分线。取与圆周的一个交点,同理取过圆心另一垂直评分线圆周上的交点,三点链接圆心就是三等分。三等分点是把一条线段平均分成三等分的点。以该线段为中线做一任意三角形,画出三角形的另一条中线,那么两中线交于点A,以该点为圆心,该线段到三角形底边的距离为半径作圆,交于该线段于点B,则点A,B就是该线段的三等分点。扩展资料。等分圆周是指利用直尺和圆规将圆周n等分,这是一个古老的数学问题。古代希腊数学家利用尺规作图可将圆周分成3,4,5,15等分,并进而将分点逐次倍增,将圆周无限等分。高斯(Gauss,1777-1855)曾证明可用尺规作图将圆周17等分,因而找到了正十七边形的尺规作图法。为此,后人把这一图形铭刻在高斯纪念碑上。


过圆心画两条垂直相交的直线,过半径做垂直评分线。取与圆周的一个交点,同理取过圆心另一垂直评分线圆周上的交点,三点链接圆心就是三等分。

三等分点是把一条线段平均分成三等分的点。以该线段为中线做一任意三角形,画出三角形的另一条中线,那么两中线交于点A,以该点为圆心,该线段到三角形底边的距离为半径作圆,交于该线段于点B,则点A,B就是该线段的三等分点。

扩展资料

等分圆周是指利用直尺和圆规将圆周n等分,这是一个古老的数学问题。古代希腊数学家利用尺规作图可将圆周分成3,4,5,15等分,并进而将分点逐次倍增,将圆周无限等分。高斯(Gauss,1777-1855)曾证明可用尺规作图将圆周17等分,因而找到了正十七边形的尺规作图法。为此,后人把这一图形铭刻在高斯纪念碑上。

参考资料:百度百科-等分圆周 

文档

如何画一个 圆 三等分?? 最好有图解!

过圆心画两条垂直相交的直线,过半径做垂直评分线。取与圆周的一个交点,同理取过圆心另一垂直评分线圆周上的交点,三点链接圆心就是三等分。三等分点是把一条线段平均分成三等分的点。以该线段为中线做一任意三角形,画出三角形的另一条中线,那么两中线交于点A,以该点为圆心,该线段到三角形底边的距离为半径作圆,交于该线段于点B,则点A,B就是该线段的三等分点。扩展资料。等分圆周是指利用直尺和圆规将圆周n等分,这是一个古老的数学问题。古代希腊数学家利用尺规作图可将圆周分成3,4,5,15等分,并进而将分点逐次倍增,将圆周无限等分。高斯(Gauss,1777-1855)曾证明可用尺规作图将圆周17等分,因而找到了正十七边形的尺规作图法。为此,后人把这一图形铭刻在高斯纪念碑上。
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top