最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

一个矩阵的特征值和它的奇异值有什么关系

来源:懂视网 责编:小OO 时间:2024-12-04 12:01:46
文档

一个矩阵的特征值和它的奇异值有什么关系

2求矩阵特征值的方法。Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。|mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。如果n阶矩阵A的全部特征值为m1 m2 ...mn,则|A|=m1*m2*...*mn。同时矩阵A的迹是特征值之和:tr(A)=m1+m2+m3+…+mn[1]。如果n阶矩阵A满足矩阵多项式方程g(A)=0.则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以通过解方程g(m)=0求得。如果您觉得正确或者采纳的话,麻烦给我好评哦,谢谢。
推荐度:
导读2求矩阵特征值的方法。Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。|mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。如果n阶矩阵A的全部特征值为m1 m2 ...mn,则|A|=m1*m2*...*mn。同时矩阵A的迹是特征值之和:tr(A)=m1+m2+m3+…+mn[1]。如果n阶矩阵A满足矩阵多项式方程g(A)=0.则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以通过解方程g(m)=0求得。如果您觉得正确或者采纳的话,麻烦给我好评哦,谢谢。

设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
2求矩阵特征值的方法
Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。
|mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。
如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn
同时矩阵A的迹是特征值之和:tr(A)=m1+m2+m3+…+mn[1]
如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以通过解方程g(m)=0求得。如果您觉得正确或者采纳的话,麻烦给我好评哦,谢谢。

文档

一个矩阵的特征值和它的奇异值有什么关系

2求矩阵特征值的方法。Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。|mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。如果n阶矩阵A的全部特征值为m1 m2 ...mn,则|A|=m1*m2*...*mn。同时矩阵A的迹是特征值之和:tr(A)=m1+m2+m3+…+mn[1]。如果n阶矩阵A满足矩阵多项式方程g(A)=0.则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以通过解方程g(m)=0求得。如果您觉得正确或者采纳的话,麻烦给我好评哦,谢谢。
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top