最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

如何求矩阵的秩

来源:动视网 责编:小OO 时间:2024-12-04 12:52:20
文档

如何求矩阵的秩

设A是一组向量,定义A的极大无关组中向量的个数为A的秩。定义1.在m´;n矩阵A中,任意决定k行和k列 (1£;k£;min{m,n}) 交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。例如,在阶梯形矩阵 中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。定义2.A=(aij)m×n的不为零的子式的最大阶数称为矩阵A 的秩,记作rA,或rankA。特别规定零矩阵的秩为零。显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<;min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
推荐度:
导读设A是一组向量,定义A的极大无关组中向量的个数为A的秩。定义1.在m´;n矩阵A中,任意决定k行和k列 (1£;k£;min{m,n}) 交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。例如,在阶梯形矩阵 中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。定义2.A=(aij)m×n的不为零的子式的最大阶数称为矩阵A 的秩,记作rA,或rankA。特别规定零矩阵的秩为零。显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<;min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。


线性代数的是吧?
设A是一组向量,定义A的极大无关组中向量的个数为A的秩。
定义1. 在m´n矩阵A中,任意决定k行和k列 (1£k£min{m,n}) 交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵 中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。

定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A 的秩,记作rA,或rankA。
特别规定零矩阵的秩为零。
显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。
还有就是线性代数的书,我指同济大学的貌似写的很清楚了,看几个例题绝对能懂

文档

如何求矩阵的秩

设A是一组向量,定义A的极大无关组中向量的个数为A的秩。定义1.在m´;n矩阵A中,任意决定k行和k列 (1£;k£;min{m,n}) 交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。例如,在阶梯形矩阵 中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。定义2.A=(aij)m×n的不为零的子式的最大阶数称为矩阵A 的秩,记作rA,或rankA。特别规定零矩阵的秩为零。显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<;min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top