
伴随着表面应力变化的体应变显著地依赖于表面积同体积的比值,如薄膜、碳纳米管件等构件,电势导致的表面应力变化远大于输入电能,因而更加适合作为电机制动器。这些基于表面应力的制动器的优点是可以在低工作电压下有非常高的工作密度。
通过测量表面应力的改变量计算出薄膜应力差时薄膜在弯曲的应力下变形,当表面应力较小,而薄膜较厚时,变形后的形状呈球面;反之就会分叉,这对制备薄膜、控制薄膜形状是非常有用的。
另外,表面应力对于吸附原子有着重要的影响,主要表现在两方面:首先,吸附原子和基底表面原子的结合将导致基底表面原子之间化学键的强度减弱和平衡键增加,从而导致表面压应力的增加;其次,吸附原子的相互作用也导致表面应力的变化,吸引作用导致表面产生拉应力,排斥作用导致表面产生压应力。吸附原子和基底表面原子的结合引起表面应力的大小与吸附原子的密度呈线性关系,而吸附原子的相互作用引起表面应力与吸附原子的密度呈非单调的依赖关系。
表面应力
基于此特性,我们在镀膜时,可以通过控制轰击靶材的原子数量来保证薄膜质量。由于表面应力的过大,也会带来负面效应,比如在薄膜制备时,由于薄膜非常薄,所以能够承受的表面应力是极度小的;其实薄膜的表面应力就是对其拉伸或弯曲时因改变薄膜表面的面积而产生的能量,而这种能量超过了薄膜能承受的范围,引起膜层裂开;另外,不易变形的工件上的薄膜不易拉伸弯曲,但不代表没有,其表面镀制的是一层很薄的膜层,所能承受的力很小。