方程x²/a²-y²/b²=1(a>0,b>0)。
c²=a²+b²。
焦点坐标(-c,0),(c,0)。
渐近线方程:y=±bx/a。
方程 y²/a²-x²/b²=1(a>0,b>0)。
c²=a²+b²。
焦点坐标(0,c),(0,-c)。
渐近线方程:y=±ax/b。
几何性质:
双曲线 x²/a²-y²/b² =1的简单几何性质。
(1)范围:|x|≥a,y∈R。
(2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。
(3)顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c²=a²+b².与椭圆不同。