最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

几何布朗运动的期望和方差

来源:懂视网 责编:小OO 时间:2024-09-29 09:17:51
文档

几何布朗运动的期望和方差

布朗运动(Brownianmotion)是一种正态的独立增量连续随机过程。它机分析中基本概念之一。其基本性质为:布朗运动W(t)是期望为0方差为t(时间)的正态随机变量。对于任意的r小于等于s,W(t)-W(s)独立于的W(r),且是期望为0方差为t-s的正态随机变量。可以证明布朗运动是马尔可夫过程、鞅过程和伊藤过程。
推荐度:
导读布朗运动(Brownianmotion)是一种正态的独立增量连续随机过程。它机分析中基本概念之一。其基本性质为:布朗运动W(t)是期望为0方差为t(时间)的正态随机变量。对于任意的r小于等于s,W(t)-W(s)独立于的W(r),且是期望为0方差为t-s的正态随机变量。可以证明布朗运动是马尔可夫过程、鞅过程和伊藤过程。

这个的期望:E(W(t))=0;方差:D(W(t))=t。其中,W(t)表示在时间t的布朗运动的值,E表示期望,D表示方差。
布朗运动(Brownianmotion)是一种正态的独立增量连续随机过程。它机分析中基本概念之一。其基本性质为:布朗运动W(t)是期望为0方差为t(时间)的正态随机变量。
对于任意的r小于等于s,W(t)-W(s)独立于的W(r),且是期望为0方差为t-s的正态随机变量。可以证明布朗运动是马尔可夫过程、鞅过程和伊藤过程。

文档

几何布朗运动的期望和方差

布朗运动(Brownianmotion)是一种正态的独立增量连续随机过程。它机分析中基本概念之一。其基本性质为:布朗运动W(t)是期望为0方差为t(时间)的正态随机变量。对于任意的r小于等于s,W(t)-W(s)独立于的W(r),且是期望为0方差为t-s的正态随机变量。可以证明布朗运动是马尔可夫过程、鞅过程和伊藤过程。
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top