稀疏矩阵对算法的影响
来源:动视网
责编:小OO
时间:2024-09-29 23:49:53
稀疏矩阵对算法的影响
1、稀疏矩阵算法是以稀疏矩阵作为核心数据结构的算法,最大特点是通过只存储和处理非零元素从而大幅度降低存储空间需求以及计算复杂度,代价则是必须使用专门的稀疏矩阵压缩存储数据结构,因而在计算过程中引入了大量的离散间接寻址操作。2、稀疏矩阵算法是典型的不规则算法,计算访存比很低,并且计算过程中的访存轨迹与稀疏矩阵的稀疏结构相关,很难发掘计算过程中的时空局部性,因此在传统的基于Cache的处理器上稀疏矩阵算法的计算效率很低。为了提高稀疏矩阵算法的计算效率,需要从稀疏存储数据结构和稀疏矩阵算法两方面对现有算法进行改进。
导读1、稀疏矩阵算法是以稀疏矩阵作为核心数据结构的算法,最大特点是通过只存储和处理非零元素从而大幅度降低存储空间需求以及计算复杂度,代价则是必须使用专门的稀疏矩阵压缩存储数据结构,因而在计算过程中引入了大量的离散间接寻址操作。2、稀疏矩阵算法是典型的不规则算法,计算访存比很低,并且计算过程中的访存轨迹与稀疏矩阵的稀疏结构相关,很难发掘计算过程中的时空局部性,因此在传统的基于Cache的处理器上稀疏矩阵算法的计算效率很低。为了提高稀疏矩阵算法的计算效率,需要从稀疏存储数据结构和稀疏矩阵算法两方面对现有算法进行改进。

稀疏矩阵对算法的影响是:
1、稀疏矩阵算法是以稀疏矩阵作为核心数据结构的算法,最大特点是通过只存储和处理非零元素从而大幅度降低存储空间需求以及计算复杂度,代价则是必须使用专门的稀疏矩阵压缩存储数据结构,因而在计算过程中引入了大量的离散间接寻址操作。
2、稀疏矩阵算法是典型的不规则算法,计算访存比很低,并且计算过程中的访存轨迹与稀疏矩阵的稀疏结构相关,很难发掘计算过程中的时空局部性,因此在传统的基于Cache的处理器上稀疏矩阵算法的计算效率很低。为了提高稀疏矩阵算法的计算效率,需要从稀疏存储数据结构和稀疏矩阵算法两方面对现有算法进行改进。
稀疏矩阵对算法的影响
1、稀疏矩阵算法是以稀疏矩阵作为核心数据结构的算法,最大特点是通过只存储和处理非零元素从而大幅度降低存储空间需求以及计算复杂度,代价则是必须使用专门的稀疏矩阵压缩存储数据结构,因而在计算过程中引入了大量的离散间接寻址操作。2、稀疏矩阵算法是典型的不规则算法,计算访存比很低,并且计算过程中的访存轨迹与稀疏矩阵的稀疏结构相关,很难发掘计算过程中的时空局部性,因此在传统的基于Cache的处理器上稀疏矩阵算法的计算效率很低。为了提高稀疏矩阵算法的计算效率,需要从稀疏存储数据结构和稀疏矩阵算法两方面对现有算法进行改进。