最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

㎡=20,M是多少

来源:懂视网 责编:小OO 时间:2024-10-21 06:00:23
文档

㎡=20,M是多少

First.we';ll simplify the equation by finding a common denominator。(20m + 12(16+m)) / (m(16+m)) = 1。Now.distribute and combine like terms in the numerator。(20m + 192 + 12m) / (m(16+m)) = 1。Combine the m terms in the numerator。(32m + 192) / (m(16+m)) = 1。Multiply both sides by m(16+m) to clear the fraction。32m + 192 = m(16+m)。
推荐度:
导读First.we';ll simplify the equation by finding a common denominator。(20m + 12(16+m)) / (m(16+m)) = 1。Now.distribute and combine like terms in the numerator。(20m + 192 + 12m) / (m(16+m)) = 1。Combine the m terms in the numerator。(32m + 192) / (m(16+m)) = 1。Multiply both sides by m(16+m) to clear the fraction。32m + 192 = m(16+m)。

20/(16+m) + 12/m = 1
First, we'll simplify the equation by finding a common denominator:
(20m + 12(16+m)) / (m(16+m)) = 1
Now, distribute and combine like terms in the numerator:
(20m + 192 + 12m) / (m(16+m)) = 1
Combine the m terms in the numerator:
(32m + 192) / (m(16+m)) = 1
Multiply both sides by m(16+m) to clear the fraction:
32m + 192 = m(16+m)
Expand the right side:
32m + 192 = 16m + m^2
Rearrange the equation to bring all terms to one side and set equal to zero:
m^2 - 20m - 192 = 0
Now we can factor the quadratic equation:
(m - 24)(m + 8) = 0
This gives us two possible values for m:
m - 24 = 0 or m + 8 = 0
Solving each equation separately:
m = 24 or m = -8
These are the two solutions to the equation. However, we must check if they satisfy the original equation. Plugging in m = 24:
20/(16+24) + 12/24 = 1
20/40 + 1/2 = 1
1/2 + 1/2 = 1
1 = 1
The value of m = 24 satisfies the original equation. For m = -8:
20/(16-8) + 12/-8 = 1
20/8 - 1.5 = 1
2.5 - 1.5 = 1
1 = 1
The value of m = -8 also satisfies the original equation. Therefore, both m = 24 and m = -8 are valid solutions.

文档

㎡=20,M是多少

First.we';ll simplify the equation by finding a common denominator。(20m + 12(16+m)) / (m(16+m)) = 1。Now.distribute and combine like terms in the numerator。(20m + 192 + 12m) / (m(16+m)) = 1。Combine the m terms in the numerator。(32m + 192) / (m(16+m)) = 1。Multiply both sides by m(16+m) to clear the fraction。32m + 192 = m(16+m)。
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top