最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

probit回归与logistic回归有什么区别

来源:动视网 责编:小OO 时间:2024-10-24 21:02:17
文档

probit回归与logistic回归有什么区别

probit与logistic的区别为:意思不同、用法不同、侧重点不同。一、意思不同;1、probit:概率单位。2、logistic:数理(符号)逻辑。二、用法不同;1、probit。probit模型服从正态分布。两个模型都是离散选择模型的常用模型。但logit模型简单直接,应用更广。而且,当因变量是名义变量时,Logit和Probit没有本质的区别,一般情况下可以换用。区别在于采用的分布函数不同,前者假设随机变量服从逻辑概率分布,而后者假设随机变量服从正态分布。
推荐度:
导读probit与logistic的区别为:意思不同、用法不同、侧重点不同。一、意思不同;1、probit:概率单位。2、logistic:数理(符号)逻辑。二、用法不同;1、probit。probit模型服从正态分布。两个模型都是离散选择模型的常用模型。但logit模型简单直接,应用更广。而且,当因变量是名义变量时,Logit和Probit没有本质的区别,一般情况下可以换用。区别在于采用的分布函数不同,前者假设随机变量服从逻辑概率分布,而后者假设随机变量服从正态分布。


probit与logistic的区别为:意思不同、用法不同、侧重点不同。

一、意思不同

1、probit:概率单位。

2、logistic:数理(符号)逻辑。

二、用法不同

1、probit:

probit模型服从正态分布。两个模型都是离散选择模型的常用模型。但logit模型简单直接,应用更广。而且,当因变量是名义变量时,Logit和Probit没有本质的区别,一般情况下可以换用。区别在于采用的分布函数不同,前者假设随机变量服从逻辑概率分布,而后者假设随机变量服从正态分布。

2、logistic:Logit模型是最早的离散选择模型,也是目前应用最广的模型。Logit模型是Luce(1959)根据IIA特性首次导出的;Marschark(1960)证明了Logit模型与最大效用理论的一致性;Marley(1965)研究了模型的形式和效用非确定项的分布之间的关系。

三、侧重点不同

1、probit:根据常态频率分配平均数的偏差计算统计单位。

2、logistic:离散选择法模型之一,Logit模型是最早的离散选择模型。

文档

probit回归与logistic回归有什么区别

probit与logistic的区别为:意思不同、用法不同、侧重点不同。一、意思不同;1、probit:概率单位。2、logistic:数理(符号)逻辑。二、用法不同;1、probit。probit模型服从正态分布。两个模型都是离散选择模型的常用模型。但logit模型简单直接,应用更广。而且,当因变量是名义变量时,Logit和Probit没有本质的区别,一般情况下可以换用。区别在于采用的分布函数不同,前者假设随机变量服从逻辑概率分布,而后者假设随机变量服从正态分布。
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top