一、选择题
1.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( ) A . B . C . D .
2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A .2.3×109 B .0.23×109 C .2.3×108 D .23×107
3.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )
A .110
B .19
C .16
D .15
4.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )
A .2
B .4
C .22
D .2
5.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .
C .
D .
6.直线y =﹣kx +k ﹣3与直线y =kx 在同一坐标系中的大致图象可能是( )
B .
C .
D .
7.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )
A .6
B .8
C .10
D .12
8.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置
(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )
A .10︒
B .20︒
C .30
D .40︒
9.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )
A .1℃~3℃
B .3℃~5℃
C .5℃~8℃
D .1℃~8℃
10.根据以下程序,当输入x =2时,输出结果为( )
A .﹣1
B .﹣4
C .1
D .11
11.如图,已知////AB CD EF ,那么下列结论正确的是( )
B .B
C DF CE A
D = C .CD BC EF B
E = D .CD AD E
F AF
= 12.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )
A .3
B .154
C .5
D .152
二、填空题
13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.
14.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.
15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 16.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 . 17.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .
18.如图,反比例函数y=
k x
的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.
20.已知M、N两点关于y轴对称,且点M在双曲线
1
2
y
x
上,点N在直线y=﹣x+3
上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.
三、解答题
21.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A 型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.
(1)每台A,B两种型号的机器每小时分别加工多少个零件?
(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?
22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
23.如图,抛物线y=ax2+bx﹣2与x轴交于两点A(﹣1,0)和B(4,0),与Y轴交于点C,连接AC、BC、AB,
(1)求抛物线的解析式;
(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=,求点D 的坐标; (3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.
24.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A ,小江抓着风筝线的一端站在D 处,他从牵引端E 测得风筝A 的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC =30米)的居民楼顶B 处测得风筝A 的仰角是45°,已知小江与居民楼的距离CD =40米,牵引端距地面高度DE =1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,c os67°≈513
,tan67°≈125,2≈1.414).
25.已知:如图,△ABC 为等腰直角三角形∠ACB =90°,过点C 作直线CM ,D 为直线CM 上一点,如果CE =CD 且EC ⊥CD .
(1)求证:△ADC ≌△BEC ;
(2)如果EC ⊥BE ,证明:AD ∥EC .
一、选择题
1.B
解析:B
【解析】
解:A.不是轴对称图形,是中心对称图形,不符合题意;
B.既是轴对称图形,也是中心对称图形,符合题意;
C.不是轴对称图形,是中心对称图形,不符合题意;
D.不是轴对称图形,也不是中心对称图形,不符合题意.
故选B.
2.C
解析:C
【解析】230000000=2.3×108 ,故选C.
3.A
解析:A
【解析】
∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),
∴当他忘记了末位数字时,要一次能打开的概率是
1 10
.
故选A.
4.C
解析:C
【解析】
【分析】
由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.
【详解】
解:连接OA,OB.
∵∠APB=45°,
∴∠AOB=2∠APB=90°.
∵OA=OB=2,
∴AB
故选C.
5.C
解析:C
【解析】
【分析】
x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.
【详解】
x=0时,两个函数的函数值y=b,
所以,两个函数图象与y轴相交于同一点,故B、D选项错误;
由A、C选项可知,抛物线开口方向向上,
所以,a>0,
所以,一次函数y=ax+b经过第一三象限,
所以,A选项错误,C选项正确.
故选C.
6.B
解析:B
【解析】
【分析】
若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.
【详解】
A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;
B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;
C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;
D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.故选B.
【点睛】
本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).7.A解析:A
【解析】
试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),
∴OB=43,
在RT△AOB中,∠OAB=30°,
∴OA=3OB=3×43=12,
∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,
∴PM=1
2 PA,
设P(x,0),∴PA=12-x,
∴⊙P的半径PM=1
2
PA=6-
1
2
x,
∵x为整数,PM为整数,
∴x可以取0,2,4,6,8,10,6个数,
∴使得⊙P成为整圆的点P个数是6.
故选A.
考点:1.切线的性质;2.一次函数图象上点的坐标特征.
8.B
解析:B
【解析】
【分析】
根据平行线的性质判断即可得出结论.
【详解】
解:直线//
m n,
21180
ABC BAC
∴∠+∠∠+∠=
+︒,
30
ABC=︒
∠,90
BAC
∠=︒,140
∠=︒,
218030904020
∴∠=---
︒︒=
︒︒︒,
故选:B.
【点睛】
本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.
9.B
解析:B
【解析】
【分析】
根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.
【详解】
解:设温度为x ℃,
根据题意可知1538
x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.
故选:B .
【点睛】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
10.D
解析:D
【解析】
【分析】
根据流程图所示顺序,逐框分析代入求值即可.
【详解】
当x =2时,x 2﹣5=22﹣5=﹣1,结果不大于1,
代入x 2﹣5=(﹣1)2﹣5=﹣4,结果不大于1,
代入x 2﹣5=(﹣4)2﹣5=11,
故选D .
【点睛】
本题考查了代数式求值,正确代入求值是解题的关键.
11.A
解析:A
【解析】
【分析】
已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.
【详解】
∵AB ∥CD ∥EF , ∴
AD BC DF CE
=. 故选A .
【点睛】
本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.
12.C
解析:C
【解析】
【分析】
【详解】
解:根据题意易证BE=DE ,设ED=x ,则AE=8﹣x ,
在△ABE 中根据勾股定理得到关于线段AB 、AE 、BE 的方程x 2=42+(8﹣x )2, 解方程得x=5,即ED=5
故选C .
【点睛】
本题考查翻折变换(折叠问题);勾股定理;方程思想.
二、填空题
13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函 解析:13
【解析】
分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.
详解:如图所示,
由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,
∴tan ∠BAC =
133EF AC AF AC ==. 故答案为13
. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.
14.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D 为AB 的中点∴DF=AB
=25∵DE 为△ABC 的中位线∴DE=BC=4∴EF=DE-
DF=15故答案为15【点睛】直角三角形斜边上的中线性质:
解析:5
【解析】
【分析】
【详解】
试题解析:∵∠AFB=90°,D 为AB 的中点,
∴DF=12
AB=2.5, ∵DE 为△ABC 的中位线,
∴DE=12
BC=4, ∴EF=DE-DF=1.5,
故答案为1.5.
【点睛】
直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.
15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;
【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键
解析:13k <<.
【解析】
【分析】
根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;
【详解】
()223y k x k =-+-经过第二、三、四象限,
∴220k -<,30k -<,
∴1k >,3k <,
∴13k <<,
故答案为:13k <<.
【点睛】
本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.
16.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角
解析:110°或70°.
试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.
考点:1.等腰三角形的性质;2.分类讨论.
17.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△C EB′为直角三角
解析:3或.
【解析】
【分析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当
△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=3,
∴CB′=5-3=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=3.
综上所述,BE的长为或3.
故答案为:或3.
18.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴
解析:-3
【解析】
分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.
详解:过点P做PE⊥y轴于点E,
∵四边形ABCD为平行四边形
∴AB=CD
又∵BD⊥x轴
∴ABDO为矩形
∴AB=DO
∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴
∴四边形PDOE为矩形面积为3
即DO•EO=3
∴设P点坐标为(x,y)
k=xy=﹣3
故答案为:﹣3
点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.
19.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-
n)=(66+5)(x+y)用n分别表示xy得到
解析:28
【解析】
【分析】
设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.
【详解】
设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,
解得,
所以x+y=n,
而15<n<30,n为正整数,n为整数,
所以n=5,
所以x+y=28,
即该班共有28位学生.
故答案为28.
【点睛】
本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.
20.(±)【解析】【详解】∵MN两点关于y轴对称∴M坐标为(ab)N为(-ab)分别代入相应的函数中得b=①a+3=b②∴ab=(a+b)2=(a-b)
2+4ab=11a+b=∴y=-x2x∴顶点坐标为
解析:( ,
112
). 【解析】
【详解】 ∵M 、N 两点关于y 轴对称,
∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=
12a ①,a+3=b ②,
∴ab=
12,(a+b )2=(a-b )2+4ab=11,a+b=
∴y=-12
x 2,
∴顶点坐标为(2b a -=244ac b a -=112),即(112
). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.
三、解答题
21.(1)每台A 型机器每小时加工8个零件,每台B 型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A 型机器安排6台,B 型机器安排4台;方案二:A 型机器安排7台,B 型机器安排3台;方案三:A 型机器安排8台,B 型机器安排2台.
【解析】
【分析】
(1)设每台B 型机器每小时加工x 个零件,则每台A 型机器每小时加工(x+2)个零件,根据工作时间=工作总量÷工作效率结合一台A 型机器加工80个零件与一台B 型机器加工60个零件所用时间相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;
(2)设A 型机器安排m 台,则B 型机器安排(10m)-台,根据每小时加工零件的总量8A =⨯型机器的数量6B +⨯型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出各安排方案.
【详解】
(1)设每台B 型机器每小时加工x 个零件,则每台A 型机器每小时加工(x+2)个零件, 依题意,得:
8060x 2x
=+, 解得:x=6,
经检验,x=6是原方程的解,且符合题意, x 28∴+=.
答:每台A 型机器每小时加工8个零件,每台B 型机器每小时加工6个零件;
(2)设A 型机器安排m 台,则B 型机器安排(10m)-台,
依题意,得:()()861072861076m m m π⎧+-⎪⎨+-⎪⎩
, 解得:6m 8, m 为正整数,
m 678∴=、、,
答:共有三种安排方案,方案一:A 型机器安排6台,B 型机器安排4台;方案二:A 型机器安排7台,B 型机器安排3台;方案三:A 型机器安排8台,B 型机器安排2台.
【点睛】
本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
22.答案见解析
【解析】
试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y 甲关于x 的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y 乙关于x 的函数关系式;
(2)分0<x≤1和x >1两种情况讨论,分别令y 甲<y 乙、y 甲=y 乙和y 甲>y 乙,解关于x 的方程或不等式即可得出结论.
试题解析:(1)由题意知:
当0<x≤1时,y 甲=22x ;当1<x 时,y 甲=22+15(x ﹣1)=15x+7.y 乙=16x+3;
∴22? (01){157?(1)
x x y x x 甲<<=+>,=163y x +乙; (2)①当0<x≤1时,令y 甲<y 乙,即22x <16x+3,解得:0<x <
12; 令y 甲=y 乙,即22x=16x+3,解得:x=
12; 令y 甲>y 乙,即22x >16x+3,解得:12
<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3,解得:x >4;
令y 甲=y 乙,即15x+7=16x+3,解得:x=4;
令y 甲>y 乙,即15x+7>16x+3,解得:0<x <4. 综上可知:当12<x <4时,选乙快递公司省钱;当x=4或x=12
时,选甲、乙两家快递公司快递费一样多;当0<x <
12
或x >4时,选甲快递公司省钱. 考点:一次函数的应用;分段函数;方案型.
23.(1)213y x x 222=--;(2)D 的坐标为122⎛- ⎝⎭,122⎛⎫+ ⎪ ⎪⎝⎭
,
(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫-
⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭
. 【解析】
【分析】 (1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;
(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似
三角形的性质结合S △DBC =35
S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;
(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则
△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12
x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解.
【详解】
(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:
20120a b a b --=⎧⎨+-=⎩ ,解得:123
2
a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =
12 x 2﹣32x ﹣2. (2)当x =0时,y =12
x 2﹣32x ﹣2=﹣2, ∴点C 的坐标为(0,﹣2).
∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),
,BC
=
AB =5.
∵AC 2+BC 2=25=AB 2,
∴∠ACB=90°.
过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC,
∴△AD 1M 1∽△ACB.
∵S △DBC =35
S ABC ∆, ∴125
AM AB =, ∴AM 1=2,
∴点M 1的坐标为(1,0),
∴BM 1=BM 2=3,
∴点M 2的坐标为(7,0).
设直线BC 的解析式为y =kx+c (k≠0),
将B (4,0),C (0,﹣2)代入y =kx+c ,得:
402k c c +=⎧⎨=-⎩ ,解得:122
k c ⎧=⎪⎨⎪=-⎩ , ∴直线BC 的解析式为y =12
x ﹣2. ∵D 1M 1∥BC∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0), ∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12
x ﹣72. 联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩
或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,
解得:112x y ⎧=⎪⎨=⎪⎩
,222x y ⎧=⎪⎨=⎪⎩3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩, ∴点D 的坐标为(2
,
2
),(
,2),(1,﹣3)或(3,﹣2). (3)分两种情况考虑,如图2所示. ①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC, 设直线AC 的解析设为y =mx+n (m≠0),
将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得: -02m n n +=⎧⎨=-⎩ ,解得:22
m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2.
∵AC⊥BC,OF 1⊥BC,
∴直线OF 1的解析式为y =﹣2x .
连接直线OF 1和直线BC 的解析式成方程组,得:2122y x y x =-⎧⎪⎨=-⎪⎩ ,
解得:
4
5
8
5
x
y
⎧
=
⎪⎪
⎨
⎪=
⎪⎩
,
∴点F1的坐标为(4
5
,﹣
8
5
);
②当点E不和点O重合时,在线段AB上取点E,使得EB=EC,过点E作EF2⊥BC于点F2,过点E作EF3⊥CE,交直线BC于点F3,则△CEF2∽△BAC∽△CF3E.
∵EC=EB,EF2⊥BC于点F2,
∴点F2为线段BC的中点,
∴点F2的坐标为(2,﹣1);
∵BC=25,
∴CF2=1
2
BC=5,EF2=
1
2
CF2=
5
2
,F2F3=
1
2
EF2=
5
4
,
∴CF3=55
4
.
设点F3的坐标为(x,1
2
x﹣2),
∵CF3=55
4
,点C的坐标为(0,﹣2),
∴x2+[1
2
x﹣2﹣(﹣2)]2=
125
16
,
解得:x1=﹣5
2
(舍去),x2=
5
2
,
∴点F3的坐标为(5
2
,﹣
3
4
).
综上所述:存在以C、E、F为顶点的三角形与△ABC相似,点F的坐标为(4
5
,﹣
8 5),(2,﹣1)或(
5
2
,﹣
3
4
).【点睛】
本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D且与直线BC平行的直线的解析式;(3)分点E与点O重合及点E与点O不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F的坐标.
24.风筝距地面的高度49.9m.
【解析】
【分析】
作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,
DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】
如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.
∵∠ABF=45°,∠AFB=90°,
∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,
在Rt△AHE中,tan67°=AH HE
,
∴1228.5 540
x
x
+
=
-
,
解得x≈19.9 m.
∴AM=19.9+30=49.9 m.
∴风筝距地面的高度49.9 m.【点睛】
本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.
25.(1)详见解析;(2)详见解析.
【解析】
【分析】
(1)根据两锐角互余的关系可得∠ACD=∠BCE,利用SAS即可证明△ADC≌△BEC;(2)由△ADC≌△BEC可得∠ADC=∠E=90°,根据平行线判定定理即可证明AD//EC.【详解】
(1)∵EC⊥DM,
∴∠ECD=90°,
∴∠ACB=∠DCE=90°,
∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,
∴∠ACD=∠BCE,
∵CD=CE,CA=CB,
∴△ADC≌△BEC(SAS).
(2)由(1)得△ADC≌△BEC,
∵EC⊥BE,
∴∠ADC=∠E=90°,
∴AD⊥DM,
∵EC⊥DM,
∴AD∥EC.
【点睛】
本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.