1.(2013·课标全国Ⅰ)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )
A. B.
C. D.
答案 B
解析 从1,2,3,4中任取2个不同的数有以下六种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足取出的2个数之差的绝对值为2的(1,3),(2,4),故所求概率是=.
2.(2013·安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )
A. B.
C. D.
答案 D
解析 事件“甲或乙被录用”的对立事件是“甲和乙都未被录用”,从五位学生中选三人的基本事件个数为10,“甲和乙都未被录用”只有1种情况,根据古典概型和对立事件的概率公式可得,甲或乙被录用的概率P=1-=.
3.甲、乙两人喊拳,每人可以用手出0,5,10三个数字,每人则可喊0,5,10,15,20五个数字,当两人所出数字之和等于某人所喊数字时喊该数字者获胜,若甲喊10,乙喊15时,则( )
A.甲胜的概率大
B.乙胜的概率大
C.甲、乙胜的概率一样大
D.不能确定谁获胜的概率大
答案 A
解析 甲、乙两人喊拳,每人用手出0,5,10三个数字,有(0,0),(0,5),(0,10),(5,0),(5,5),(5,10),(10,0),(10,5),(10,10),共9种情况.若甲喊10,则有(0,10),(5,5),(10,0),共3种情况获胜,所以甲胜的概率为;乙喊15时,有(5,10),(10,5),共2种情况获胜,所以乙胜的概率为.所以甲胜的概率大.
4.(2012·安徽)袋有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )
A. B.
C. D.
答案 B
解析 标记红球为A,白球分别为B1、B2,黑球分别为C1、C2、C3,记事件M为“取出的两球一白一黑”.则基本事件有:(A,B1),(A,B2),(A,C1),(A,C2),(A,C3),(B1,B2),(B1,C1),(B1,C2),(B1,C3),(B2,C1),(B2,C2),(B2,C3),(C1,C2),(C1,C3),(C2,C3),共15个.其中事件M包含的基本事件有:(B1,C1),(B1,C2),(B1,C3),(B2,C1),(B2,C2),(B2,C3),共6个.根据古典概型的概率计算公式可得其概率为P(M)==.
5.连续抛掷两次骰子得到的点数分别为m和n,记向量a=(m,n),向量b=(1,-2),则a⊥b的概率是( )
A. B.
C. D.
答案 A
解析 由a⊥b,得m-2n=0,所以事件“a⊥b”包含的基本事件为(2,1),(4,2),(6,3)共3个,所以a⊥b的概率是=,故选A.
6.抛掷两枚均匀的骰子,得到的点数分别为a,b,那么直线+=1的斜率k≥-的概率为( )
A. B.
C. D.
答案 D
解析 记a,b的取值为数对(a,b),由题意知a,b的所有可能取值有(1,1),(1,2),…,(1,6),(2,1),(2,2),…,(2,6),(3,1),(3,2),…,(3,6),(4,1),(4,2),…,(4,6),(5,1),(5,2),…,(5,6),(6,1),(6,2),…,(6,6),共36种.由直线+=1的斜率k=-≥-,知≤,那么满足题意的a,b可能的取值为(2,1),(3,1),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),(6,3),共有9种,所以所求概率为=,故选D.
7.宋庆龄基金会计划给西南某干旱地区援助,6家矿泉水企业参与了竞标,其中A企业来自浙江省,B,C两家企业来自福建省,D,E,F三家企业来自河南省.此项援助计划从两家企业购水,假设每家企业中标的概率相同.则在中标的企业中,至少有一家来自河南省的概率是( )
A. B.
C. D.
答案 A
解析 在六家矿泉水企业中,选取两家有15种情况,其中至少有一家企业来自河南有12种情况,故所求概率为.
8.(2014·衡水调研卷)一张储蓄卡的密码共有6位数字,每位数字都可从0-9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,若他记得密码的最后一位是偶数,则他不超过2次就按对的概率是( )
A. B.
C. D.
答案 C
解析 只按一次就按对的概率是.按两次就按对的概率是=,所以不超过2次就按对的概率是+=,选C.
9.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点分别为x,y,则log2xy=1的概率为( )
A. B.
C. D.
答案 C
解析 要使log2xy=1,则要求2x=y,∴出现的基本事件数为3,∴概率为=.
10.一个袋子中有5个大小相同的球,其中3个白球与2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为( )
A. B.
C. D.
答案 B
解析 设3个白球分别为a1,a2,a3,2个黑球分别为b1,b2,则先后从中取出2个球的所有可能结果为(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),(a2,a1),(a3,a1),(b1,a1),(b2,a1),(a3,a2),(b1,a2),(b2,a2),(b1,a3),(b2,a3),(b2,b1),共20种.其中满足第一次为白球、第二次为黑球的有(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),共6种,故所求概率为=.
11.一根绳子长为6米,绳子上有5个节点将绳子6等分,现从5个节点中随机选一个将绳子剪断,则所得的两段绳子均不小于2米的概率为________.
答案
解析 随机选一个节点将绳子剪断共有5种情况,分别为(1,5),(2,4),(3,3),(4,2),(5,1).满足两段绳子均不小于2米的为(2,4),(3,3),(4,2),共3种情况,所以所求概率为.
12.
如图在平行四边形ABCD中,O是AC与BD的交点,P、Q、M、N分别是线段OA、OB、OC、OD的中点.在A、P、M、C中任取一点记为E,在B、Q、N、D中任取一点记为F.设G为满足向量=+的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为________.
答案
解析 基本事件的总数是4×4=16,在=+中,当=+,=+,=+,=+时,点G分别为该平行四边形各边的中点,此时点G在平行四边形的边界上,而其余情况的点G都在平行四边形外,故所求的概率是1-=.
13.若集合A={a|a≤100,a=3k,k∈N*},集合B={b|b≤100,b=2k,k∈N*},在A∪B中随机地选取一个元素,则所选取的元素恰好在A∩B中的概率为________.
答案
解析 易知A={3,6,9,…,99},B={2,4,6,…,100},
则A∩B={6,12,18,…,96},其中有元素16个.
A∪B中元素共有33+50-16=67(个),∴所求概率为.
14.某学校为促进学生的全面发展,积极开设各种各样的社团活动,根据调查,学校在传统民族文化的继承方面开设了“泥塑”、“剪纸”、“年画”三个社团,三个社团参加的人数如下表所示:
社团 | 泥塑 | 剪纸 | 年画 |
人数 | 320 | 240 | 200 |
(1)求三个社团分别抽取了多少人;
(2)设从“剪纸”社团抽取的同学中有2名女生.现要从“剪纸”社团中选出2人担任该社团活动监督的职务,求至少有1名女生被选中的概率.
答案 (1)8,6,5 (2)
解析 (1)设抽样比为x,则由分层抽样可知,“泥塑”、“剪纸”、“年画”三个社团抽取的人数分别为320x,240x,200x.
则由题意得320x-240x=2,解得x=.
故“泥塑”、“剪纸”、“年画”三个社团抽取的人数分别为320×=8,240×=6,200×=5.
(2)由(1)知,从“剪纸”社团抽取了6人,其中2位女生记为A,B,4位男生记为C,D,E,F.
则从这6位同学中任选2人,不同的结果有{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.
其中含有1名女生的选法为{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},共8种;
含有2名女生的选法只有{A,B}.
故至少有1名女生被选中的概率为=.
15.(2013·北京)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.
(1)求此人到达当日空气质量优良的概率;
(2)求此人在该市停留期间只有1天空气质量污染的概率;
(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
答案 (1) (2) (3)3月5日
解析 (1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是.
(2)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”,所以此人在该市停留期间只有1天空气重度污染的概率为.
(3)从3月5日开始连续三天的空气质量指数方差最大.
16.(2013·天津)某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:
产品编号 | A1 | A2 | A3 | A4 | A5 |
质量指标(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
产品编号 | A6 | A7 | A8 | A9 | A10 |
质量指标(x,y,z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(2)在该样本的一等品中,随机抽取2件产品.
①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.
答案 (1)0.6 (2)①略 ②
解析 (1)计算10件产品的综合指标S,如下表:
产品编号 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
S | 4 | 4 | 6 | 3 | 4 | 5 | 4 | 5 | 3 | 5 |
(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.
②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.
所以P(B)==.