
(试卷满分120分,考试时间20分钟)
一、选择题:(本大题共12小题,每小题3分,共36分;给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效.)
1.﹣2的绝对值是( )
A.﹣2 B.2 C. D.﹣
2.如图,已知直线a∥b,∠1=60°,则∠2的度数是( )
A.45° B.55° C.60° D.120°
3.一组数据2,3,4,x,6的平均数是4,则x是( )
A.2 B.3 C.4 D.5
4.如图是某几何体的三视图,则该几何体是( )
A.长方体 B.正方体 C.三棱柱 D.圆柱
5.某图书馆有图书约985000册,数据985000用科学记数法可表示为( )
A.985×103 B.98.5×104 C.9.85×105 D.0.985×106
6.下列图形中,既是轴对称图形又是中心对称图形的是( )
A.正三角形 B.平行四边形 C.正五边形 D.圆
7.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE=4,则BC等于( )
A.5 B.6 C.7 D.8
8.把多项式4a2﹣1分解因式,结果正确的是( )
A.(4a+1)(4a﹣1) B.(2a+1)(2a﹣1)
C.(2a﹣1)2 D.(2a+1)2
9.已知方程组,则2x+6y的值是( )
A.﹣2 B.2 C.﹣4 D.4
10.已知ab<0,一次函数y=ax﹣b与反比例函数y=在同一直角坐标系中的图象可能( )
A. B.
C. D.
11.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是( )
A.2 B.2 C.3 D.4
12.计算++++…+的结果是( )
A. B. C. D.
二、填空题:(本大题共6小题,每小题3分,共18分;请把答案填在答题卡对应的位置上,在试卷上作答无效.)
13.要使分式有意义,则x的取值范围是 .
14.计算a3•a的结果是 .
15.调查我市一批药品的质量是否符合国家标准.采用 方式更合适.(填“全面调查”或“抽样调查”)
16.已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是 度.
17.已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①abc<0;②a﹣b+c<0;③3a+c=0;④当﹣1<x<3时,y>0,正确的是 (填写序号).
18.如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为 .
三、解答题:(本大题共8题,满分66分.解答应写出文宇说明、证明过程或演算步骤.在试卷上作答无效)
19.(6分)计算:(﹣1)2019+(π﹣3.14)0﹣+2sin30°.
20.(6分)解不等式组:
21.(8分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.
(1)请用树状图或列表法把上述所有等可能的结果表示出来;
(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.
22.(8分)如图,在A处的正东方向有一港口B.某巡逻艇从A处沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶3小时到达港口B.求A,B间的距离.(≈1.73,≈1.4,结果保留一位小数).
23.(8分)2016年,某贫困户的家庭年人均纯收入为2500元,通过产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.
(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;
(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?
24.(8分)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.
(1)求证:△ABE≌△CDF;
(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.
25.(10分)如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.
(1)求∠ADB的度数;
(2)求AC的长度.
26.(12分)如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.
(1)求A,C两点的坐标;
(2)求抛物线的解析式;
(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.
参与试题解析
一、选择题:(本大题共12小题,每小题3分,共36分;给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效.)
1.B 2.C 3.D 4.B 5.C 6.D 7.B 8.B 9.C 10.A 11.A 12.B
二、填空题:(本大题共6小题,每小题3分,共18分;请把答案填在答题卡对应的位置上,在试卷上作答无效.)
13. x≠﹣1 14.a4 15.抽样调查 16. 90 17.①③④ 18. 6﹣2.
三、解答题:(本大题共8题,满分66分.解答应写出文宇说明、证明过程或演算步骤.在试卷上作答无效)
19.解:原式=﹣1+1﹣4+2×
=﹣4+1
=﹣3.
20.解:解①得x>2,
解②得x>﹣3,
所以不等式组的解集为﹣3<x<2.
21.解:(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,
画树状图如图所示,
由图可知,共有12种等可能结果;
(2)由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,
所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为=.
22.解:过点C作CD⊥AB,垂足为点D,则∠ACD=60°,∠BCD=45°,如图所示.
在Rt△BCD中,sin∠BCD=,cos∠BCD=,
∴BD=BC•sin∠BCD=20×3×≈42,CD=BC•cos∠BCD=20×3×≈42;
在Rt△ACD中,tan∠ACD=,
∴AD=CD•tan∠ACD=42×≈72.2.
∴AB=AD+BD=72.2+42=114.2.
∴A,B间的距离约为114.2海里.
23.解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,
依题意,得:2500(1+x)2=3600,
解得:x1=0.2=20%,x2=﹣2.2(舍去).
答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.
(2)3600×(1+20%)=4320(元),
4320>4200.
答:2019年该贫困户的家庭年人均纯收入能达到4200元.
24.(1)证明:∵四边形ABCD是矩形,
∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,
在Rt△ABE和Rt△CDF中,,
∴Rt△ABE≌Rt△CDF(HL);
(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:
∵△ABE≌△CDF,
∴BE=DF,
∵BC=AD,
∴CE=AF,
∵CE∥AF,
∴四边形AECF是平行四边形,
又∵AC⊥EF,
∴四边形AECF是菱形.
25.解:(1)∵AF与⊙O相切于点A,
∴AF⊥OA,
∵BD是⊙O的直径,
∴∠BAD=90°,
∵∠BAC=120°,
∴∠DAC=30°,
∴∠DBC=∠DAC=30°,
∵∠F=30°,
∴∠F=∠DBC,
∴AF∥BC,
∴OA⊥BC,
∴∠BOA=90°﹣30°=60°,
∴∠ADB=∠AOB=30°;
(2)∵OA⊥BC,
∴BE=CE=BC=4,
∴AB=AC,
∵∠AOB=60°,OA=OB,
∴△AOB是等边三角形,
∴AB=OB,
∵∠OBE=30°,
∴OE=OB,BE=OE=4,
∴OE=,
∴AC=AB=OB=2OE=.
26.解:(1)OA=OC=4OB=4,
故点A、C的坐标分别为(4,0)、(0,﹣4);
(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),
即﹣4a=﹣4,解得:a=1,
故抛物线的表达式为:y=x2﹣3x﹣4;
(3)直线CA过点C,设其函数表达式为:y=kx﹣4,
将点A坐标代入上式并解得:k=1,
故直线CA的表达式为:y=x﹣4,
过点P作y轴的平行线交AC于点H,
∵OA=OC=4,∴∠OAC=∠OCA=45°,
∵PH∥y轴,∴∠PHD=∠OCA=45°,
设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),
PD=HPsin∠PFD=(x﹣4﹣x2+3x+4)=﹣x2+2x,
∵<0,∴PD有最大值,当x=2时,其最大值为2,
此时点P(2,﹣6).
