2008年08月31日 星期日 21:56
命题:
证明:
说明:
巧用焦半径公式能妙解许多问题,下面举例说明。
一、用于求离心率
例
分析:
所以,
所以。
二、用于求椭圆离心率的取值范围
例
分析:
由得
故,即,又。
所以。
三、用于求焦半径的取值范围
例
分析:
所以。
四、用于求两焦半径之积
例
分析:
由知,所以的最小值为,最大值为。
五、用于求三角形的面积
例
分析:
。
由余弦定理得。
解得
所以
六、用于求点的坐标
例
分析:
及得
,
解得
所以。
七、用于证明定值问题
例
分析:
化简得
所以为定值。
八、用于求角的大小
例
分析:
所以
所以。
九、用于求线段的比。
例
分析:
由两式相减并化简得
。
所以
。
所以
。
令,则,故
所以,
所以。
如图 设的坐标为,椭圆与双曲线的离心率分别为,则,,消去得,。不妨设,由成等差数列得,即。 易知易知 的最值不妨设为椭圆的左焦点,而,则。故。 设的坐标为,则 如图,连,则,由焦半径公式得,即。 若椭圆的焦点在轴上,则有。我们把椭圆上的点到两焦点的距离称为焦半径,而(或)、(或)称为焦半径公式。如图1,椭圆的准线方程为和。由椭圆的第二定义得,化简即得1如图为椭圆的两个焦点,以线段为直径的圆交椭圆于四点,顺次连结这四点和两个焦点,恰好围成一个正六边形,则离心率。2已知为椭圆的焦点,若椭圆上恒存在点,使,求离心率的取值范围。3若是椭圆上的点,为椭圆的焦点,求的取值范围。4若为椭圆的左、右焦点,为椭圆上任意一点,求的最值。5 若是椭圆上一点,为椭圆的左、右焦点,且,求的面积S。 。6 若为椭圆上的点,为椭圆的焦点,且,则的横坐标为_________。 由, ,7已知为椭圆上两点,为椭圆的顶点,F为焦点,若成等差数列,求证:为定值。 ,8 如图3,设椭圆与双曲线有公共焦点,为其交点,求。9过椭圆的左焦点作与长轴不垂直的弦的垂直平分线交轴于,则。4,设的坐标分别为,AB的中点为,则。AB的垂直平行线方程为N的坐标为若椭圆的焦点为 |