最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

椭圆焦半径公式的证明和应用

来源:动视网 责编:小OO 时间:2025-09-29 18:26:45
文档

椭圆焦半径公式的证明和应用

椭圆焦半径公式的证明及巧用2008年08月31日星期日21:56命题:证明:说明:巧用焦半径公式能妙解许多问题,下面举例说明。一、用于求离心率例分析:所以,所以。二、用于求椭圆离心率的取值范围例分析:由得故,即,又。所以。三、用于求焦半径的取值范围例分析:所以。四、用于求两焦半径之积例分析:由知,所以的最小值为,最大值为。五、用于求三角形的面积例分析:。由余弦定理得。解得所以六、用于求点的坐标例分析:及得,解得所以。七、用于证明定值问题例分析:化简得所以为定值。八、用于求角的大小例分析:所以所
推荐度:
导读椭圆焦半径公式的证明及巧用2008年08月31日星期日21:56命题:证明:说明:巧用焦半径公式能妙解许多问题,下面举例说明。一、用于求离心率例分析:所以,所以。二、用于求椭圆离心率的取值范围例分析:由得故,即,又。所以。三、用于求焦半径的取值范围例分析:所以。四、用于求两焦半径之积例分析:由知,所以的最小值为,最大值为。五、用于求三角形的面积例分析:。由余弦定理得。解得所以六、用于求点的坐标例分析:及得,解得所以。七、用于证明定值问题例分析:化简得所以为定值。八、用于求角的大小例分析:所以所
椭圆焦半径公式的证明及巧用

2008年08月31日 星期日 21:56

命题:

证明:

说明:

巧用焦半径公式能妙解许多问题,下面举例说明。

一、用于求离心率

分析:

所以,

所以。

二、用于求椭圆离心率的取值范围

分析:

由得

故,即,又。

所以。

三、用于求焦半径的取值范围

分析:

所以。

四、用于求两焦半径之积

分析:

由知,所以的最小值为,最大值为。

五、用于求三角形的面积

分析:

由余弦定理得。

解得

所以

六、用于求点的坐标

分析:

及得

解得

所以。

七、用于证明定值问题

分析:

化简得

所以为定值。

八、用于求角的大小

分析:

所以

所以。

九、用于求线段的比。

分析:

由两式相减并化简得

所以

所以

令,则,故

所以,

所以。

如图 设的坐标为,椭圆与双曲线的离心率分别为,则,,消去得,。不妨设,由成等差数列得,即。 易知易知 的最值不妨设为椭圆的左焦点,而,则。故。 设的坐标为,则 如图,连,则,由焦半径公式得,即。 若椭圆的焦点在轴上,则有。我们把椭圆上的点到两焦点的距离称为焦半径,而(或)、(或)称为焦半径公式。如图1,椭圆的准线方程为和。由椭圆的第二定义得,化简即得1如图为椭圆的两个焦点,以线段为直径的圆交椭圆于四点,顺次连结这四点和两个焦点,恰好围成一个正六边形,则离心率。2已知为椭圆的焦点,若椭圆上恒存在点,使,求离心率的取值范围。3若是椭圆上的点,为椭圆的焦点,求的取值范围。4若为椭圆的左、右焦点,为椭圆上任意一点,求的最值。5 若是椭圆上一点,为椭圆的左、右焦点,且,求的面积S。 。6 若为椭圆上的点,为椭圆的焦点,且,则的横坐标为_________。 由, ,7已知为椭圆上两点,为椭圆的顶点,F为焦点,若成等差数列,求证:为定值。 ,8 如图3,设椭圆与双曲线有公共焦点,为其交点,求。9过椭圆的左焦点作与长轴不垂直的弦的垂直平分线交轴于,则。4,设的坐标分别为,AB的中点为,则。AB的垂直平行线方程为N的坐标为若椭圆的焦点为

文档

椭圆焦半径公式的证明和应用

椭圆焦半径公式的证明及巧用2008年08月31日星期日21:56命题:证明:说明:巧用焦半径公式能妙解许多问题,下面举例说明。一、用于求离心率例分析:所以,所以。二、用于求椭圆离心率的取值范围例分析:由得故,即,又。所以。三、用于求焦半径的取值范围例分析:所以。四、用于求两焦半径之积例分析:由知,所以的最小值为,最大值为。五、用于求三角形的面积例分析:。由余弦定理得。解得所以六、用于求点的坐标例分析:及得,解得所以。七、用于证明定值问题例分析:化简得所以为定值。八、用于求角的大小例分析:所以所
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top