最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

遗传算法优化BP神经网络权值和阈值的通用

来源:动视网 责编:小OO 时间:2025-09-29 18:22:33
文档

遗传算法优化BP神经网络权值和阈值的通用

遗传算法优化BP神经网络权值和阈值的通用MATLAB源码遗传算法优化神经网络有两种情况,一种是把训练好的神经网络作为黑箱函数,用遗传算法搜索该黑箱函数的最大值,另外一种情况,则是把遗传算法用于神经网络的训练,充分利用遗传算法全局搜索的特性,得到一个初始的权值矩阵和初始的阈值向量,再用其它训练算法(如BP算法),得到最终的神经网络结构。经过GreenSim团队大量实践表明,这种GA和BP网络相结合的方法,能显著地提高BP神经网络的性能,基本上和支持向量机的性能相当,有时甚至优于支持向量机。由于B
推荐度:
导读遗传算法优化BP神经网络权值和阈值的通用MATLAB源码遗传算法优化神经网络有两种情况,一种是把训练好的神经网络作为黑箱函数,用遗传算法搜索该黑箱函数的最大值,另外一种情况,则是把遗传算法用于神经网络的训练,充分利用遗传算法全局搜索的特性,得到一个初始的权值矩阵和初始的阈值向量,再用其它训练算法(如BP算法),得到最终的神经网络结构。经过GreenSim团队大量实践表明,这种GA和BP网络相结合的方法,能显著地提高BP神经网络的性能,基本上和支持向量机的性能相当,有时甚至优于支持向量机。由于B
遗传算法优化BP神经网络权值和阈值的通用MATLAB源码

遗传算法优化神经网络有两种情况,一种是把训练好的神经网络作为黑箱函数,用遗传算法搜索该黑箱函数的最大值,另外一种情况,则是把遗传算法用于神经网络的训练,充分利用遗传算法全局搜索的特性,得到一个初始的权值矩阵和初始的阈值向量,再用其它训练算法(如BP算法),得到最终的神经网络结构。经过GreenSim团队大量实践表明,这种GA和BP网络相结合的方法,能显著地提高BP神经网络的性能,基本上和支持向量机的性能相当,有时甚至优于支持向量机。由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。此文章首次发表是在simwe论坛,属于GreenSim团队原创作品,转载请注明,有意购买源码或代写相关程序,请与GreenSim团队联系(主页http://blog.sina.com.cn/greensim)。

程序一:GA训练BP权值的主函数

function net=GABPNET(XX,YY)

%--------------------------------------------------------------------------

% GABPNET.m

% 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络

% GreenSim团队原创作品,转载请注明

% Email:greensim@163.com

% GreenSim团队主页:http://blog.sina.com.cn/greensim

% 欢迎访问GreenSim——算法仿真团队→http://blog.sina.com.cn/greensim

%--------------------------------------------------------------------------

%数据归一化预处理

nntwarn off

XX=premnmx(XX);

YY=premnmx(YY);

%创建网络

net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');

%下面使用遗传算法对网络进行优化

P=XX;

T=YY;

R=size(P,1);

S2=size(T,1);

S1=25;%隐含层节点数

aa=ones(S,1)*[-1,1];

popu=50;%种群规模

initPpp=initializega(popu,aa,'gabpEval');%初始化种群

gen=100;%遗传代数

%下面调用gaot工具箱,其中目标函数定义为gabpEval

[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,...

'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);

%绘收敛曲线图

figure(1)

plot(trace(:,1),1./trace(:,3),'r-');

hold on

plot(trace(:,1),1./trace(:,2),'b-');

xlabel('Generation');

ylabel('Sum-Squared Error');

figure(2)

plot(trace(:,1),trace(:,3),'r-');

hold on

plot(trace(:,1),trace(:,2),'b-');

xlabel('Generation');

ylabel('Fittness');

%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络

[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);

net.LW{2,1}=W1;

net.b{2,1}=B1;

net.b{3,1}=B2;

XX=P;

YY=T;

%设置训练参数

net.trainParam.show=1;

net.trainParam.lr=1;

net.trainParam.epochs=50;

net.trainParam.g

oal=0.001;

%训练网络

net=train(net,XX,YY);

程序二:适应值函数

function [sol, val] = gabpEval(sol,options)

% val - the fittness of this individual

% sol - the individual, returned to allow for Lamarckian evolution

% options - [current_generation]

load data2

nntwarn off

XX=premnmx(XX);

YY=premnmx(YY);

P=XX;

T=YY;

R=size(P,1);

S2=size(T,1);

S1=25;%隐含层节点数

S=R*S1+S1*S2+S1+S2;%遗传算法编码长度

for i=1:S,

x(i)=sol(i);

end;

[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);

程序三:编解码函数

function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x)

load data2

nntwarn off

YY=premnmx(YY);

P=XX;

T=YY;

R=size(P,1);

S2=size(T,1);

S1=25;%隐含层节点数

S=R*S1+S1*S2+S1+S2;%遗传算法编码长度

% 前R*S1个编码为W1

for i=1:S1,

for k=1:R,

W1(i,k)=x(R*(i-1)+k);

end

end

% 接着的S1*S2个编码(即第R*S1个后的编码)为W2

for i=1:S2,

for k=1:S1,

W2(i,k)=x(S1*(i-1)+k+R*S1);

end

end

% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1

for i=1:S1,

B1(i,1)=x((R*S1+S1*S2)+i);

end

% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2

for i=1:S2,

B2(i,1)=x((R*S1+S1*S2+S1)+i);

end

% 计算S1与S2层的输出

A1=tansig(W1*P,B1);

A2=purelin(W2*A1,B2);

% 计算误差平方和

SE=sumsqr(T-A2);

val=1/SE; % 遗传算法的适应值

文档

遗传算法优化BP神经网络权值和阈值的通用

遗传算法优化BP神经网络权值和阈值的通用MATLAB源码遗传算法优化神经网络有两种情况,一种是把训练好的神经网络作为黑箱函数,用遗传算法搜索该黑箱函数的最大值,另外一种情况,则是把遗传算法用于神经网络的训练,充分利用遗传算法全局搜索的特性,得到一个初始的权值矩阵和初始的阈值向量,再用其它训练算法(如BP算法),得到最终的神经网络结构。经过GreenSim团队大量实践表明,这种GA和BP网络相结合的方法,能显著地提高BP神经网络的性能,基本上和支持向量机的性能相当,有时甚至优于支持向量机。由于B
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top