1.某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售
价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ) 求的值;
(Ⅱ) 若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
2.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本)
3.某学校要建造一个面积为10000平方米的运动场.如图,运动场是由一个矩形ABCD和分别以AD、BC为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元
(1)设半圆的半径OA= (米),试建立塑胶跑道面积S与的函数关系S()
(2)由于条件,问当取何值时,运动场造价最低?
4一根水平放置的长方体形枕木的安全负荷与它的宽度成正比,与它的厚度的平方成正比,与它的长度的平方成反比.
(Ⅰ)将此枕木翻转90°(即宽度变为厚度),枕木的安全负荷会如何变化?为什么?(设翻转前后枕木的安全负荷分别为且翻转前后的比例系数相同都为)
(Ⅱ)现有一根横断面为半圆(已知半圆的半径为)的木材,用它来截取成长方体形的枕木,其长度为10,问截取枕木的厚度为多少时,可使安全负荷最大?
5.某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)
(1)设(弧度),将绿化带总长度表示为的函数;
(2)试确定的值,使得绿化带总长度最大.
6.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为.设该容器的建造费用为千元.
(Ⅰ)写出关于的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的.