1.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺、标杆、一副三角尺、小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.
(1)所需的测量工具是: ;
(2)请在下图中画出测量示意图;
(3)设树高的长度为,请用所测数据(用小写字母表示)求出.
2、如图,直角梯形ABCD中,AB∥CD,AB⊥BC,对角线AC⊥BD,垂足为E,
AD=BD,过点E作EF∥AB交AD于F。
求证:(1)AF=BE;
(2)
3.四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.
求证:(1);(2)
4、已知如图,矩形ABCD中,CH⊥BD于点H,P为AD上的一个动点(点P与点A、D不重合),CP与BD交于点E,若CH=60/13,DH:CD=5:13,设AP=x,四边形ABEP的面积为y。
(1)求BD的长;
(2)求y与x的函数关系式,并写出自变量x的取值范围;
(3)当四边形ABEP的面积是ΔPED面积的5倍时,连接PB,判断ΔPAB与ΔPDC是否相似?如果相似,求出相似比;如果不相似,请说明理由。
5.如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.
(1)求证:AB·AF=CB·CD
(2)已知AB=15cm,BC=9cm,P是射线DE上的动点.设DP=xcm(x>0),四边形BCDP的面积为ycm2.
①求y关于x的函数关系式;
②当x为何值时,△PBC的周长最小,并求出此时y的值.
6、如图11,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.
(2)求m与n的函数关系式,直接写出自变量n的取值范围.
(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图12).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD+CE=DE.
(4)在旋转过程中,(3)中的等量关系BD+CE=DE是否始终成立,若成立,请证明,若不成立,请说明理由.