最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

中考数学二次函数综合经典题含答案解析

来源:动视网 责编:小OO 时间:2025-09-29 18:15:07
文档

中考数学二次函数综合经典题含答案解析

一、二次函数真题与模拟题分类汇编(难题易错题)1.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销
推荐度:
导读一、二次函数真题与模拟题分类汇编(难题易错题)1.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销
一、二次函数 真题与模拟题分类汇编(难题易错题)

1.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.

(1)求w与x之间的函数关系式;

(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?

(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?

【答案】(1)w=﹣2x2+480x﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元

【解析】

【分析】

(1)用每件的利润乘以销售量即可得到每天的销售利润,即 然后化为一般式即可;

(2)把(1)中的解析式进行配方得到顶点式然后根据二次函数的最值问题求解;

(3)求所对应的自变量的值,即解方程然后检验即可.

【详解】

(1)

 

w与x的函数关系式为:  

(2) 

 

∴当时,w有最大值.w最大值为3200.

答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元.

(3)当时,  

解得:  

∵想卖得快,

不符合题意,应舍去.

答:销售单价应定为100元.

2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;    

(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;    

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.

【答案】(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.

【解析】

【分析】

(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;

(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;

(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.

【详解】

解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,

解得:b=﹣4,c=3,

∴二次函数的表达式为:y=x2﹣4x+3;

(2)令y=0,则x2﹣4x+3=0,

解得:x=1或x=3,

∴B(3,0),

∴BC=3,

点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,

①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3

∴P1(0,3+3),P2(0,3﹣3);

②当PB=PC时,OP=OB=3,

∴P3(0,-3);

③当BP=BC时,

∵OC=OB=3

∴此时P与O重合,

∴P4(0,0);

综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);

(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,

∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,

当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.

3.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C

.

(1)求抛物线的表达式;

(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.

①若点P的横坐标为,求△DPQ面积的最大值,并求此时点D 的坐标;

②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.

【答案】(1)抛物线y=-x2+2x+3;(2)①点D( );②△PQD面积的最大值为8

【解析】

分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;

(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+6x+,再利用二次函数的性质即可解决最值问题;

(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.

详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:

,解得:,

∴抛物线的表达式为y=-x2+2x+3.

(2)(I)当点P的横坐标为-时,点Q的横坐标为,

∴此时点P的坐标为(-,),点Q的坐标为(,-).

设直线PQ的表达式为y=mx+n,

将P(-,)、Q(,-)代入y=mx+n,得:

,解得:,

∴直线PQ的表达式为y=-x+.

如图②,过点D作DE∥y轴交直线PQ于点E,

设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+),

∴DE=-x2+2x+3-(-x+)=-x2+3x+,

∴S△DPQ=DE•(xQ-xP)=-2x2+6x+=-2(x-)2+8.

∵-2<0,

∴当x=时,△DPQ的面积取最大值,最大值为8,此时点D的坐标为(,).

(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,

∴点P的坐标为(t,-t2+2t+3),点Q的坐标为(4+t,-(4+t)2+2(4+t)+3),

利用待定系数法易知,直线PQ的表达式为y=-2(t+1)x+t2+4t+3.

设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),

∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,

∴S△DPQ=DE•(xQ-xP)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.

∵-2<0,

∴当x=t+2时,△DPQ的面积取最大值,最大值为8.

∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.

点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-2x2+6x+;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.

4.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.

例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.

(1)分别判断函数y=﹣x+1,y=,y=x2有没有反向值?如果有,直接写出其反向距离;

(2)对于函数y=x2﹣b2x,

①若其反向距离为零,求b的值;

②若﹣1≤b≤3,求其反向距离n的取值范围;

(3)若函数y=请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.

【答案】(1)y=−有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.

【解析】

【分析】

(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;

(2)①根据题意可以求得相应的b的值;

②根据题意和b的取值范围可以求得相应的n的取值范围;

(3)根据题目中的函数解析式和题意可以解答本题.

【详解】

(1)由题意可得,

当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,

当﹣m=时,m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距离为2,

当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;

(2)①令﹣m=m2﹣b2m,

解得,m=0或m=b2﹣1,

∵反向距离为零,

∴|b2﹣1﹣0|=0,

解得,b=±1;

②令﹣m=m2﹣b2m,

解得,m=0或m=b2﹣1,

∴n=|b2﹣1﹣0|=|b2﹣1|,

∵﹣1≤b≤3,

∴0≤n≤8;

(3)∵y=,

∴当x≥m时,

﹣m=m2﹣3m,得m=0或m=2,

∴n=2﹣0=2,

∴m>2或m≤﹣2;

当x<m时,

﹣m=﹣m2﹣3m,

解得,m=0或m=﹣4,

∴n=0﹣(﹣4)=4,

∴﹣2<m≤2,

由上可得,当m>2或m≤﹣2时,n=2,

当﹣2<m≤2时,n=4.

【点睛】

本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定答相关问题.

5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.

(1)求此抛物线的解析式及顶点D的坐标;

(2)点M是抛物线上的动点,设点M的横坐标为m.

①当∠MBA=∠BDE时,求点M的坐标;

②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.

【答案】(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或

【解析】

【分析】

(1)利用待定系数法即可解决问题;

(2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.

【详解】

(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,

得到,解得,

∴抛物线的解析式为y=﹣x2+2x+3,

∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,

∴顶点D坐标(1,4);

(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),

∴MG=|﹣m2+2m+3|,BG=3﹣m,

∴tan∠MBA=,

∵DE⊥x轴,D(1,4),

∴∠DEB=90°,DE=4,OE=1,

∵B(3,0),

∴BE=2,

∴tan∠BDE==,

∵∠MBA=∠BDE,

∴=,

当点M在x轴上方时, =,

解得m=﹣或3(舍弃),

∴M(﹣,),

当点M在x轴下方时, =,

解得m=﹣或m=3(舍弃),

∴点M(﹣,﹣),

综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);

②如图中,∵MN∥x轴,

∴点M、N关于抛物线的对称轴对称,

∵四边形MPNQ是正方形,

∴点P是抛物线的对称轴与x轴的交点,即OP=1,

易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,

当﹣m2+2m+3=1﹣m时,解得m=,

当﹣m2+2m+3=m﹣1时,解得m=,

∴满足条件的m的值为或.

【点睛】

本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.

6.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.

(1)求抛物线的解析式;

(2)过点A的直线交直线BC于点M.

①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;

②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.

【答案】(1)抛物线解析式为y=﹣x2+6x﹣5;(2)①P点的横坐标为4或或;②点M的坐标为(,﹣)或(,﹣).

【解析】

分析:(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;

(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,-m2+6m-5),则D(m,m-5),讨论:当P点在直线BC上方时,PD=-m2+6m-5-(m-5)=4;当P点在直线BC下方时,PD=m-5-(-m2+6m-5),然后分别解方程即可得到P点的横坐标;

②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,-2),

AC的解析式为y=5x-5,E点坐标为(,-),利用两直线垂直的问题可设直线EM1的解析式为y=-x+b,把E(,-)代入求出b得到直线EM1的解析式为y=-x-,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x-5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.

详解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),

当y=0时,x﹣5=0,解得x=5,则B(5,0),

把B(5,0),C(0,﹣5)代入y=ax2+6x+c得

,解得,

∴抛物线解析式为y=﹣x2+6x﹣5;

(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),

∵B(5,0),C(0,﹣5),

∴△OCB为等腰直角三角形,

∴∠OBC=∠OCB=45°,

∵AM⊥BC,

∴△AMB为等腰直角三角形,

∴AM=AB=×4=2,

∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,

∴PQ=AM=2,PQ⊥BC,

作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,

∴PD=PQ=×2=4,

设P(m,﹣m2+6m﹣5),则D(m,m﹣5),

当P点在直线BC上方时,

PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,

当P点在直线BC下方时,

PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,

综上所述,P点的横坐标为4或或;

②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,

∵M1A=M1C,

∴∠ACM1=∠CAM1,

∴∠AM1B=2∠ACB,

∵△ANB为等腰直角三角形,

∴AH=BH=NH=2,

∴N(3,﹣2),

易得AC的解析式为y=5x﹣5,E点坐标为(,﹣,

设直线EM1的解析式为y=﹣x+b,

把E(,﹣)代入得﹣+b=﹣,解得b=﹣,

∴直线EM1的解析式为y=﹣x﹣

解方程组得,则M1(,﹣);

作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,

设M2(x,x﹣5),

∵3=

∴x=,

∴M2(,﹣).

综上所述,点M的坐标为(,﹣)或(,﹣).

点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.

7.如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.

(1)若直线经过、两点,求直线和抛物线的解析式;

(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;

(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.

【答案】(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.

【解析】

分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;

(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;

(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.

详解:(1)依题意得:,解得:,

∴抛物线的解析式为.

∵对称轴为,且抛物线经过,

∴把、分别代入直线,

得,解之得:,

∴直线的解析式为.

(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,

∴.即当点到点的距离与到点的距离之和最小时的坐标为.

(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).

(3)设,又,,

∴,,,

①若点为直角顶点,则,即:解得:,

②若点为直角顶点,则,即:解得:,

③若点为直角顶点,则,即:解得:

,.

综上所述的坐标为或或或.

点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.

8.如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0).

(1)求点B的坐标;

(2)已知,C为抛物线与y轴的交点.

①若点P在抛物线上,且,求点P的坐标;

②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

【答案】(1)点B的坐标为(1,0).

(2)①点P的坐标为(4,21)或(-4,5).

②线段QD长度的最大值为.

【解析】

【分析】

(1)由抛物线的对称性直接得点B的坐标.

(2)①用待定系数法求出抛物线的解析式,从而可得点C的坐标,得到,设出点P 的坐标,根据列式求解即可求得点P的坐标.

②用待定系数法求出直线AC的解析式,由点Q在线段AC上,可设点Q的坐标为(q,-q-3),从而由QD⊥x轴交抛物线于点D,得点D的坐标为(q,q2+2q-3),从而线段QD等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.

【详解】

解:(1)∵A、B两点关于对称轴对称 ,且A点的坐标为(-3,0),

∴点B的坐标为(1,0).

(2)①∵抛物线,对称轴为,经过点A(-3,0),

∴,解得.

∴抛物线的解析式为.

∴B点的坐标为(0,-3).∴OB=1,OC=3.∴.

设点P的坐标为(p,p2+2p-3),则.

∵,∴,解得.

当时;当时,,

∴点P的坐标为(4,21)或(-4,5).

②设直线AC的解析式为,将点A,C的坐标代入,得:

,解得:.

∴直线AC的解析式为.

∵点Q在线段AC上,∴设点Q的坐标为(q,-q-3).

又∵QD⊥x轴交抛物线于点D,∴点D的坐标为(q,q2+2q-3).

∴.

∵,

∴线段QD长度的最大值为.

9.如图,抛物线的图象过点.

(1)求抛物线的解析式;

(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;

(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得?若存在,请求出点M的坐标;若不存在,请说明理由.

【答案】(1);(2)存在,点,周长为:;(3)存在,点M坐标为

【解析】

【分析】

(1)由于条件给出抛物线与x轴的交点,故可设交点式,把点C代入即求得a的值,减小计算量.

(2)由于点A、B关于对称轴:直线对称,故有,则,所以当C、P、B在同一直线上时,最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把代入即求得点P纵坐标.

(3)由可得,当两三角形以PA为底时,高相等,即点C和点M到直线PA距离相等.又因为M在x轴上方,故有.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.

【详解】

解:(1)∵抛物线与x轴交于点 

∴可设交点式 

把点代入得:

∴抛物线解析式为

(2)在抛物线的对称轴上存在一点P,使得的周长最小.

如图1,连接PB、BC

∵点P在抛物线对称轴直线上,点A、B关于对称轴对称

∵当C、P、B在同一直线上时,最小

最小

设直线BC解析式为

把点B代入得:,解得:

∴直线BC:

∴点使的周长最小,最小值为.

(3)存在满足条件的点M,使得.

∵S△PAM=S△PAC

∴当以PA为底时,两三角形等高

∴点C和点M到直线PA距离相等

∵M在x轴上方

,设直线AP解析式为

     解得:

∴直线

∴直线CM解析式为:

解得:(即点C),

∴点M坐标为

【点睛】

考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M在x轴上方,无需分类讨论,解法较常规而简单.

10.在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0).

(1)求抛物线对应的二次函数表达式;

(2)探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由;

(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,).

【答案】(1)y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由见解析;(3)点N(,﹣).

【解析】

【分析】

(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式,即可求解;

(2)利用同底等高的两个三角形的面积相等,即可求解;

(3)由(2)知:点N是PQ的中点,根据C,P点的坐标求出直线PC的解析式,同理求出AC,DQ的解析式,并联立方程求出Q点的坐标,从而即可求N点的坐标.

【详解】

(1)函数表达式为:y=a(x﹣1)2+4,

将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,

解得:a=﹣1,

故抛物线的表达式为:y=﹣x2+2x﹣3;

(2)OM将四边形OBAD分成面积相等的两部分,理由:

如图1,∵DE∥AO,S△ODA=S△OEA,

S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,

∴S△OME=S△OBM,

∴S四边形OMAD=S△OBM;

(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,

解得:m=﹣1或4,故点P(4,﹣5);

如图2,故点D作QD∥AC交PC的延长线于点Q,

由(2)知:点N是PQ的中点,

设直线PC的解析式为y=kx+b,

将点C(﹣1,0)、P(4,﹣5)的坐标代入得:,

解得:,

所以直线PC的表达式为:y=﹣x﹣1…①,

同理可得直线AC的表达式为:y=2x+2,

直线DQ∥CA,且直线DQ经过点D(0,3),

同理可得直线DQ的表达式为:y=2x+3…②,

联立①②并解得:x=﹣,即点Q(﹣,),

∵点N是PQ的中点,

由中点公式得:点N(,﹣).

【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N是PQ的中点,是本题解题的突破点.

文档

中考数学二次函数综合经典题含答案解析

一、二次函数真题与模拟题分类汇编(难题易错题)1.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top