【学习目标】
1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);
2.能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.
【要点梳理】
【幂的运算 知识要点】
要点一、同底数幂的乘法性质
(其中都是正整数).即同底数幂相乘,底数不变,指数相加.
要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.
(2)三个或三个以上同底数幂相乘时,也具有这一性质,
即(都是正整数).
(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。即(都是正整数).
要点二、幂的乘方法则
(其中都是正整数).即幂的乘方,底数不变,指数相乘.
要点诠释:(1)公式的推广: (,均为正整数)
(2)逆用公式:,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.
要点三、积的乘方法则
(其中是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
要点诠释:(1)公式的推广: (为正整数).
(2)逆用公式:逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:
要点四、注意事项
(1)底数可以是任意实数,也可以是单项式、多项式.
(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.
(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.
(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要乘方.
(5)灵活地双向应用运算性质,使运算更加方便、简洁.
(6)带有负号的幂的运算,要养成先化简符号的习惯.
【典型例题】
类型一、同底数幂的乘法性质
1、计算:
(1);(2);
(3).
【答案与解析】
解:(1)原式.
(2)原式.
(3)原式.
【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中的指数是1.在第(3)小题中把看成一个整体.
举一反三:
【变式】计算:
(1);
(2)(为正整数);
(3)(为正整数).
【答案】
解:(1)原式.
(2)原式.
(3)原式.
2、已知,求的值.
【思路点拨】同底数幂乘法的逆用:
【答案与解析】
解:由得.
∴ .
【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:.
类型二、幂的乘方法则
3、计算:
(1);(2);(3).
【思路点拨】此题是幂的乘方运算,(1)题中的底数是,(2)题中的底数是,(3)题中的底数的指数是,乘方以后的指数应是.
【答案与解析】
解:(1).
(2).
(3).
【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.
4、已知,求的值.
【答案与解析】
解:∵ ,∴ .
【总结升华】(1)逆用幂的乘方法则:.(2)本题培养了学生的整体思想和逆向思维能力.
举一反三:
【变式1】已知,.求的值.
【答案】
解:.
【高清课堂396573 幂的运算 例3】
【变式2】已知,,求的值.
【答案】
解:因为, .
所以.
类型三、积的乘方法则
5、指出下列各题计算是否正确,指出错误并说明原因:
(1); (2); (3).
【答案与解析】
解:(1)错,这是积的乘方,应为:.
(2)对.
(3)错,系数应为9,应为:.
【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.
(2)注意系数及系数符号,对系数-1不可忽略.
《幂的运算》能力提高练习题
1、计算(﹣2)100+(﹣2)99所得的结果是( )
A、﹣299 B、﹣2 C、299 D、2
2、当m是正整数时,下列等式成立的有( )
(1)a2m=(am)2;(2)a2m=(a2)m;
(3)a2m=(﹣am)2;(4)a2m=(﹣a2)m.
A、4个 B、3个 C、2个 D、1个
3、下列运算正确的是( )
A、2x+3y=5xy B、(﹣3x2y)3=﹣9x6y3
C、 D、(x﹣y)3=x3﹣y3
4、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是( )
A、an与bn B、a2n与b2n C、a2n+1与b2n+1 D、a2n﹣1与﹣b2n﹣1
5、下列等式中正确的个数是( )
①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.
A、0个 B、1个 C、2个 D、3个
二、填空题。
6、计算:x2•x3= _________ ;(﹣a2)3+(﹣a3)2= _________ .
7、若2m=5,2n=6,则2m+2n= _________ .
三、解答题
8、已知3x(xn+5)=3xn+1+45,求x的值.
9、若1+2+3+…+n=a,求代数式(xny)(xn﹣1y2)(xn﹣2y3)…(x2yn﹣1)(xyn)的值.
10、已知2x+5y=3,求4x•32y的值.
11、已知25m•2•10n=57•24,求m、n.
12、已知ax=5,ax+y=25,求ax+ay的值.
13、若xm+2n=16,xn=2,求xm+n的值.
14、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式。
15、比较下列一组数的大小.8131,2741,961
16、如果a2+a=0(a≠0),求a2005+a2004+12的值.
17、已知9n+1﹣32n=72,求n的值.
18、若(anbmb)3=a9b15,求2m+n的值.
19、计算:an﹣5(an+1b3m﹣2)2+(an﹣1bm﹣2)3(﹣b3m+2)
20、若x=3an,y=﹣,当a=2,n=3时,求anx﹣ay的值.
21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.
22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)5
23、若(am+1bn+2)(a2n﹣1b2n)=a5b3,则求m+n的值.
24、用简便方法计算:
(1)(2)2×42 (2)(﹣0.25)12×412
(3)0.52×25×0.125 (4)[()2]3×(23)3