最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

幂的运算讲义

来源:动视网 责编:小OO 时间:2025-09-29 18:52:49
文档

幂的运算讲义

课时二幂的运算【学习目标】1.掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2.能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.【要点梳理】【幂的运算知识要点】要点一、同底数幂的乘法性质(其中都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即(都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中
推荐度:
导读课时二幂的运算【学习目标】1.掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2.能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.【要点梳理】【幂的运算知识要点】要点一、同底数幂的乘法性质(其中都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即(都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中
课时二 幂的运算

【学习目标】

1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);

2.能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.

【要点梳理】

【幂的运算 知识要点】

要点一、同底数幂的乘法性质

(其中都是正整数).即同底数幂相乘,底数不变,指数相加.

要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.

(2)三个或三个以上同底数幂相乘时,也具有这一性质, 

即(都是正整数). 

(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。即(都是正整数).

要点二、幂的乘方法则

     (其中都是正整数).即幂的乘方,底数不变,指数相乘.

要点诠释:(1)公式的推广: (,均为正整数)

(2)逆用公式:,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.

要点三、积的乘方法则

  (其中是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.

要点诠释:(1)公式的推广: (为正整数).

         (2)逆用公式:逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如: 

要点四、注意事项

(1)底数可以是任意实数,也可以是单项式、多项式.

(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.

(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.

(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要乘方.

(5)灵活地双向应用运算性质,使运算更加方便、简洁.

(6)带有负号的幂的运算,要养成先化简符号的习惯.

【典型例题】

类型一、同底数幂的乘法性质    

1、计算:

(1);(2);

(3).

【答案与解析】

解:(1)原式.

(2)原式.

(3)原式.

【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中的指数是1.在第(3)小题中把看成一个整体.

举一反三:

【变式】计算:

(1);

(2)(为正整数);

(3)(为正整数).

【答案】

解:(1)原式.

(2)原式.

(3)原式.

2、已知,求的值. 

【思路点拨】同底数幂乘法的逆用: 

【答案与解析】

解:由得.

∴  .

【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:.

类型二、幂的乘方法则

3、计算:

(1);(2);(3).

【思路点拨】此题是幂的乘方运算,(1)题中的底数是,(2)题中的底数是,(3)题中的底数的指数是,乘方以后的指数应是.

【答案与解析】

解:(1).

(2).

(3). 

【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.

4、已知,求的值.

【答案与解析】 

解:∵  ,∴  .

【总结升华】(1)逆用幂的乘方法则:.(2)本题培养了学生的整体思想和逆向思维能力.

举一反三:

【变式1】已知,.求的值.

【答案】

解:.

【高清课堂396573  幂的运算 例3】

【变式2】已知,,求的值.

【答案】

解:因为,  .

所以.

类型三、积的乘方法则

5、指出下列各题计算是否正确,指出错误并说明原因:

(1);    (2);   (3).

【答案与解析】

解:(1)错,这是积的乘方,应为:.

(2)对.

(3)错,系数应为9,应为:.

【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.

(2)注意系数及系数符号,对系数-1不可忽略.

《幂的运算》能力提高练习题

一、选择题。

1、计算(﹣2)100+(﹣2)99所得的结果是(  )

    A、﹣299        B、﹣2        C、299        D、2

2、当m是正整数时,下列等式成立的有(  )

(1)a2m=(am)2;(2)a2m=(a2)m;

(3)a2m=(﹣am)2;(4)a2m=(﹣a2)m.

    A、4个        B、3个        C、2个        D、1个

3、下列运算正确的是(  )

    A、2x+3y=5xy        B、(﹣3x2y)3=﹣9x6y3

    C、        D、(x﹣y)3=x3﹣y3

4、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是(  )

    A、an与bn        B、a2n与b2n        C、a2n+1与b2n+1        D、a2n﹣1与﹣b2n﹣1

5、下列等式中正确的个数是(  )

①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.

    A、0个        B、1个        C、2个        D、3个

二、填空题。

6、计算:x2•x3= _________ ;(﹣a2)3+(﹣a3)2= _________ .

7、若2m=5,2n=6,则2m+2n= _________ .

三、解答题

8、已知3x(xn+5)=3xn+1+45,求x的值.

9、若1+2+3+…+n=a,求代数式(xny)(xn﹣1y2)(xn﹣2y3)…(x2yn﹣1)(xyn)的值.

10、已知2x+5y=3,求4x•32y的值.

11、已知25m•2•10n=57•24,求m、n.

12、已知ax=5,ax+y=25,求ax+ay的值.

13、若xm+2n=16,xn=2,求xm+n的值.

14、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式。

15、比较下列一组数的大小.8131,2741,961

16、如果a2+a=0(a≠0),求a2005+a2004+12的值.

17、已知9n+1﹣32n=72,求n的值.

18、若(anbmb)3=a9b15,求2m+n的值.

19、计算:an﹣5(an+1b3m﹣2)2+(an﹣1bm﹣2)3(﹣b3m+2)

20、若x=3an,y=﹣,当a=2,n=3时,求anx﹣ay的值.

21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.

22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)5

23、若(am+1bn+2)(a2n﹣1b2n)=a5b3,则求m+n的值.

24、用简便方法计算:

(1)(2)2×42                         (2)(﹣0.25)12×412

(3)0.52×25×0.125            (4)[()2]3×(23)3

文档

幂的运算讲义

课时二幂的运算【学习目标】1.掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2.能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.【要点梳理】【幂的运算知识要点】要点一、同底数幂的乘法性质(其中都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即(都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top