一、圆的概念
集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合;
2、圆的外部:可以看作是到定点的距离大于定长的点的集合;
3、圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系
1、点在圆内 点在圆内;
2、点在圆上 点在圆上;
3、点在圆外 点在圆外;
三.圆的确定:不在同一条直线上的三个点确定一个圆
三、直线与圆的位置关系
1、直线与圆相离 无交点;
2、直线与圆相切 有一个交点;
3、直线与圆相交 有两个交点;
四、圆与圆的位置关系
外离(图1) 无交点 ;
外切(图2)有一个交点 ;
相交(图3)有两个交点 ;
内切(图4)有一个交点 ;
内含(图5) 无交点 ;
五、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理5个结论中,只要知道其中2个即可推出其它3个结论,即:
①是直径 ② ③ ④ 弧弧 ⑤ 弧弧
中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙中,∵∥
∴弧弧
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,
只要知道其中的1个相等,则可以推出其它的3个结论,
即:①;②;
③;④ 弧弧
七、圆周角定理
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵和是弧所对的圆心角和圆周角
∴
2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;
即:在⊙中,∵、都是所对的圆周角
∴
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙中,∵是直径 或∵
∴ ∴是直径
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△中,∵
∴△是直角三角形或
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
9、切线的性质与判定定理
直线和圆有唯一的公共点时,这条直线叫圆的切线,交点是切点。
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;
两个条件:过半径外端且垂直半径,二者缺一不可
即:∵且过半径外端
∴是⊙的切线
(2)性质定理:切线垂直于过切点的半径(如上图)
推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理
切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵、是的两条切线
∴
平分
十一、圆幂定理
(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙中,∵弦、相交于点,
∴
(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙中,∵直径,
∴
(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙中,∵是切线,是割线
∴
(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙中,∵、是割线
∴
十二、两圆公共弦定理
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。
如图:垂直平分。
即:∵⊙、⊙相交于、两点
∴垂直平分
十三、圆的公切线
两圆公切线长的计算公式:
(1)公切线长:中,;
(2)外公切线长:是半径之差; 内公切线长:是半径之和 。
十四、圆内正多边形的计算
(1)正三角形
在⊙中△是正三角形,有关计算在中进行:;
(2)正四边形
同理,四边形的有关计算在中进行,:
十五、扇形、圆柱和圆锥的相关计算公式
1、扇形:(1)弧长公式:;
(2)扇形面积公式:
:圆心角 :扇形多对应的圆的半径 :扇形弧长:扇形面积
2、圆柱:
(1)圆柱侧面展开图
=
(2)圆柱的体积:
(2)圆锥侧面展开图
(1)=
(2)圆锥的体积:
圆
一、选择
1。下列命题中正确的有( )个
(1) 平分弦的直径垂直于弦
(2)经过半径一端且与这条半径垂直的直线是圆的切线
(3)在同圆或等圆中,圆周角等于圆心角的一半
(4)平面内三点确定一个圆
(5)三角形的外心到各个顶点的距离相等
(A) 1个 (B) 2个 (C) 3个 (D) 4个
2。如图,直线是的两条切线,
分别为切点,, 厘米,则弦的长为( )
A.厘米 B.5厘米
C.厘米 D.厘米
3。小明想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是( )
4。已知在△ABC中,AB=AC=13,BC=10,那么△ABC的内切圆的半径为( )
A. B. C.2 D.3
5。若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm、深约为2 cm的小坑,则该铅球的直径约为( )
A. 10 cm B. 14.5 cm C. 19.5 cm D. 20 cm
6。如图9,在10×6的网格图中(每个小正方形的边长均为1个单位长),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B内切,那么⊙A由图示位置需向右平移 _______个单位长.
7。一扇形的圆心角为150°,半径为4,用它作为一个圆锥的侧面,那么这个圆锥的表面积是_____________
8。已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为 。
9。直角三角形的两条直角边分别为5cm和12cm,则其外接圆半径长为
10。点A是半径为3的圆外一点,它到圆的最近点的距离为5,则过点A 的切线长为__________
11、如图,直线AB、CD相交于点O,∠AOC=300,半径为1cm的⊙P的圆心在射线OA上,开始时,PO=6cm.如果⊙P以1cm/秒的速度沿由A向B的方向移动,那么当⊙P的运动时间t(秒)满足条件 时,⊙P与直线CD相交.
12。如图,点是上两点,,点是上的动点(与不重合),连结,过点分别作于,于,则 .
13。已知是半径为的圆内的一条弦,点为圆上除点外任意一点,若,则的度数为 .
14。⊙0的半径为5,A、B两动点在⊙0上,AB=4,AB的中点为点C,在移动的过程中,点C始终在半径为_______的一个圆上,直线AB和这个圆的位置关系是______
15. Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为________
三、解答
16。已知:△ABC内接于⊙O,过点A作直线EF。
(1)如图1,AB为直径,要使EF为⊙O的切线,还需添加的条件是(只需写出三种情况):
① ;② ;③ 。
(2)如图2,AB是非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线。
17。求作一个⊙O,使它与已知∠ABC的边AB,BC都相切,并经过另一边BC上的一点P.
18。如图,从点P向⊙O引两条切线PA,PB,切点为A,B,AC为弦,BC为⊙O的直径,若∠P=60°,PB=2cm,求AC的长.
19。如图,已知扇形AOB的半径为12,OA⊥OB,C为OB上一点,以OA为直线的半圆O与以BC为直径的半圆O相切于点D.求图中阴影部分面积.
20. 如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线过点A(—1,0),与⊙C相切于点D,求直线的解析式。
答案:
1.A
2.A
3.B
4.A
5.B
6.4或6
7.
8.2或8
9.6.5cm
10.cm
11.4<t≤6
12.5
13.60°或120°
14.3,相切
15.12
16.(1)①BA⊥EF;②∠CAE=∠B;③∠BAF=90°。
(2)连接AO并延长交⊙O于点D,连接CD,
则AD为⊙O的直径,∴∠D+∠DAC=90°。
∵∠D与∠B同对弧AC,∴∠D=∠B,
又∵∠CAE=∠B,∴∠D=∠CAE,
∴∠DAC+∠EAC=90°, ∴EF是⊙O的切线。
17. 作法:①作∠ABC的角平分线BD.
②过点P作PQ⊥BC,交BD于点O,则O为所求作圆的圆心.
③以O为圆心,以OP为半径作圆.
则⊙O就是所求作的圆
18. 连结AB.∵∠P=60°,AP=BP,
∴△APB为等边三角形.
AB=PB=2cm,PB是⊙O的切线,PB⊥BC,
∴∠ABC=30°,
∴AC=2·=.
19. 扇形的半径为12,则=6,设⊙O2的半径为R.
连结O1O2,O1O2=R+6,OO2=12-R.
∴Rt△O1OO2中,36+(12-R)2=(R+6)2,
∴R=4.
S扇形=·122=36,S=·62=18,S=·42=8.
∴S阴=S扇形-S-S=36-18-8=10.
20. 如图所示,连接CD,∵直线为⊙C的切线,∴CD⊥AD。
∵C点坐标为(1,0),∴OC=1,即⊙C的半径为1,∴CD=OC=1。
又∵点A的坐标为(—1,0),∴AC=2,∴∠CAD=30°。
作DE⊥AC于E点,则∠CDE=∠CAD=30°,∴CE=,
,∴OE=OC-CE=,∴点D的坐标为(,)。
设直线的函数解析式为,则 解得 k=,b=,
∴直线的函数解析式为y=x+.