参与试题解析
一.选择题(共7小题)
1.(2021春•吉安县期中)数列满足,则前40项和为 A .940
B .820
C .1830
D .1880
【解答】解:由,可得为奇数时,;为偶数时,.
设,则,,所以前40项和为.故选:.
2.(2021秋•麒麟区校级月考)已知数列的前项和,数列满足,记数列的前项和为,则 A .2021
B .2021
C .2018
D .2021
【解答】解:由数列的前项和为,当时,;
当时,上式对时也成立,函数的周期,.故选:.
3.(2021•未央区校级模拟)数列满足,若,且数列的前项和为,则 {}n a 1(1)21n n n a a n ++-=-{}n a ()1(1)21n n n a a n ++-=-n 121n n a a n +-=-n 121n n a a n ++=-1a t =21a t =+32a t =-47a t =-5a t =69a t =+72a t =-815a t =-...{}n a 1234567837383940()()...()a a a a a a a a a a a a ++++++++++++1
1022...15410(10154)8202
=++++=
⨯⨯+=B {}n a n 2n S n n =-{}n b 1
sin 2
n n n b a π+={}n b n n T 2017(T =){}n a n 2n S n n =-1n =11110a S ==-=2n …221[(1)(1)]22n n n a S S n n n n n -=-=-----=-1n =22n a n ∴=-∴cos
2(1)cos
22
n n n n b a n ππ
==- cos
2
n y π
=242
T ππ==2017152013262143720154820162017
()()()()T b b b b b b b b b b b b b ∴=++⋯++++⋯++++⋯++++⋯++201702(152013)02(372015)4032cos
450420162
π
=-++⋯+++++⋯++=⨯=A {}n a 11a =1(1)(1)n n na n a n n +=+++2cos 3
n n n b a π
={}n b n n S 11(S =)
B .80
C .
D .【解答】解:数列满足,则
,可得数列是首项为1、公差为1的等差数列,
即有
,即为,则,则.
故选:.
4.(2021秋•南昌月考)已知数列满足,则的前20项和 A .
B .
C .
D .
【解答】解:数列满足,
则的前20项和.
故选:.
5.(2021秋•内蒙古期末)已知数列是首项为,公比的等比数列,且.若数列的前项和为,则 A .B .C .D .【解答】解:数列是首项为,公比的等比数列,可得,
,
-80
-{}n a 11a =1(1)(1)n n na n a n n +=+++111n n
a a n n
+=++{}n a
n
n
a n n
=2n a n =222cos
cos
33
n n n n b a n ππ
==22222222222111
(1245781011)(369)
2S =-++++++++++222222222222221
(12334566791011)
2=-+--++---+--++1
(5234159)2
=-⨯+++=-C {}n a *22()n n n a a n N ++=∈{}n a 20(S =)
20215-20225-21215-21225
-{}n a *22()n n n a a n N ++=∈{}n a 2013192420()()
S a a a a a a =++⋯++++⋯+5172618(222)(222)=++⋯++++⋯+45245442[(2)1]2[(2)1]2121--=+
--21225-=D {}n a 12a =2q =1n n n b a a +=+{}n b n n S (n S =)323
n -g 1323
n +-g 32n
g 1326
n +-g {}n a 12a =2q =112232n n n n n n b a a ++=+=+=g 6(12)62612
n n n S -==--g
故选:.
6.(2021春•万载县校级期末)若数列的通项公式是,则等于 A .60B .C .90D .【解答】解:由,
可得.
故选:.
7.(2021春•成都期末)已知数列满足,为的前项和,则 A .300
B .320
C .340
D .360
【解答】解:因为,所以当为偶数时,有,
;,.
当为奇数时,有,
,,.
故选:.
二.解答题(共10小题)
8.(2021•山东)在等差数列中,已知公差,是与的等比中项.(Ⅰ)求数列的通项公式;
(Ⅱ)设,记,求.
【解答】解:(Ⅰ)是与的等比中项,
D {}n a (1)(32)n n a n =--1260a a a ++⋅⋅⋅+()
60-90
-(1)(32)n n a n =--1260(14)(710)(1316)...(175178)a a a ++⋅⋅⋅+=-++-++-+++-+33...333090=+++=⨯=C {}n a 1(1)31n n n a a n ++-=+n S {}n a n 20(S =)1(1)31n n n a a n ++-=+n 131n n a a n ++=+2134n n a a n ++∴-=+265n n a a n +∴+=+2462517a a ∴+=⨯+=6866541a a +=⨯+=⋯182********a a +=⨯+=∴24205(17113)
3252
a a a ⨯++++=
= n 131n n a a n +-=+2134n n a a n ++∴+=+23n n a a +∴+=133a a ∴+=573a a +=⋯17193a a +=13195315a a a ∴+++=⨯= 2012320
S a a a a ∴=++++ 13192420()()a a a a a a =+++++++ 32515340=+=C {}n a 2d =2a 1a 4a {}n a (1)2
n n n b a +=1234(1)n n n T b b b b b =-+-+-⋯+-n T 2a 1a 4a
在等差数列中,公差,
,即,
化为,解得.
.
(Ⅱ),
.当时,.当时,
.
故.(也可以利用“错位相减法” 9.(2021•天津)已知是等比数列,前项和为,且,.(1)求的通项公式;
(2)若对任意的,是和的等差中项,求数列的前项和.【解答】解:(1)设的公比为,则,即,解得或.
若,则,与矛盾,不符合题意.,.
2
14 {}n a 2d =∴2111()(3)a d a a d +=+2111(2)(32)a a a +=+⨯2122a =12a =1(1)2(1)22n a a n d n n ∴=+-=+-⨯=(1)2
(1)n n n b a n n +==+ 1234(1)1(11)2(21)(1)(1)n n n n T b b b b b n n ∴=-+-+-⋯+-=-⨯++⨯+-⋯+-+g *2()n k k N =∈2212(21)(21)(211)4k k b b k k k k k --=+---+=2143221()()()
n k k T b b b b b b -=-+-+⋯+-(1)(2)
4(12)42(1)22
k k n n k k k ++=++⋯+=⨯
=+=
*21()n k k N =-∈2143222321
()()()n k k k T b b b b b b b ---=-+-+⋯+--(1)(1)
(1)
2
n n n n -+=
-+2(1)2
n +=-2
(2)
,2(*)2
(1),21(*)2n n n n k k N T n n k k N +⎧=∈⎪⎪=⎨+⎪-=-∈⎪⎩)
{}n a n *()n S n N ∈123
112
a a a -=663S ={}n a *n N ∈n
b 2log n a 21log n a +2
{(1)}n n
b -2n {}n a q 2111112a a q a q -=2
12
1q q -=2q =1q =-1q =-60S =663S =2q ∴=616(12)
6312
a S -∴==-11a ∴=
(2)是和的等差中项,..是以
为首项,以1为公差的等差数列.设的前项和为,则.
10.(2021秋•东丽区校级月考)已知数列的各项均为正数,其前项和为,且满足.(Ⅰ)求数列的通项公式;
(Ⅱ)若,数列满足,求数列的前项和;(Ⅲ)数列满足为非零整数),都有恒成立,求实数的值.【解答】解:(Ⅰ)当时,得或,(舍,
当时,.
则,
即,
即数列是公差为1的等差数列,则,.(Ⅱ)当是奇数时,当是偶数时,则数列的前项和.n n b 2log n a 21log n a +221211
(log log )(log 222
n n n b a a +∴=
+=1
2log 2n -+1
)2
n n =-
11n n b b +∴-={}n b ∴1
2
2
{(1)}n n
b -2n n T 2222221234212()()()n n n T b b b b b b -=-++-++⋯+-+1234212n n
b b b b b b -=+++⋯++1211
22
22222
n n b b n n +-+==g 22n ={}n a n n S 2
2n
n n a S a =-2n n b ={}n c 2
2
sin cos 22
n n n n n c a b ππ
=⋅-⋅{}n c 2n 2n T {}n d 1*3(1)2()(n a n n n d n N λλ-=+-⋅∈1n n d d +>λ1n =211112a a a a =-=11a =10a =)2n (2)
1112n n n a S a +++=-22111122n n n n n n n n a a S a S a a a ++++-=--+=+111()()n n n n n n a a a a a a ++++-=+0n a > 11n n a a +∴-={}n a 11n a n n =+-=*n N ∈n 2
2sin cos 22
n n n n n n c a b a n ππ
=⋅-⋅==n 2n n n c b =-=-{}n c 2n 21221211
(121)4(41)14
424133n n
n
n n i i i i n n T c c n +-==+--=+=
-=-⋅+-∑∑
(Ⅲ),恒成立,
当是奇数时,得,得,从而,
当是偶数时,得,得,从而,
为非零整数,.
11.设是等比数列,是递增的等差数列,的前项和为,.
(Ⅰ)求与的通项公式;
(Ⅱ)设,求.
【解答】解:(Ⅰ)设等比数列的公比为,递增的等差数列的公差为,由,可得,解得,(舍去)或,所以,;(Ⅱ)当时,2,
设;当时,
设,
所以.12.(2021春•武清区校级期末)已知等比数列的各项均为正数,成等差数列,且满足
,数列的前项和,且.(1)求数列和的通项公式;
11111113(1)23(1)23(1)23(1)2233(2)n n a a n n n n n n n n n n n n n n d d λλλλλ++-++-+-=+-⋅---⋅=+-⋅---⋅=⨯+-1n n d d +> ∴n 233(2)0n n λ⨯+->23320n n λ⨯->13
(2n λ-<1λ 2λ>-λ 1λ∴=-{}n a {}n b {}n b n (*)n S n N ∈12a =11b =413S a a =+213a b b =+{}n a {}n b 2(1),2(1)(24),21 (1)(3)k k k n n n n b n k d b n k b b ⎧-=⎪ =-+⎨=-⎪++⎩k N +∈41n i i d =∑{}n a q {}n b (0)d d >12a =11b =413S a a =+213a b b =+24622d q +=+2112q d =++1q =0d =2q =1d =2n n a =n b n =2()n k k N +=∈22(1)k n k d d k ==-1k =...2n 222222244...(12)(34)...[(21)(2)]1234...(21)2n A d d d n n n n =+++=-++-+++--+=+++++-+22(12) 22 n n n n += =+21()n k k N +=-∈2121 2121(1)(24)(1)(42)(1)(3)2(22) k k k n k k k b k d d b b k k -----+-+===+++121111 (1)(1)()2(1)21 k k k k k k k +=-⋅⋅=⋅-+++134111111111 ...(1...)(1)2223221221 n B d d d n n n -=+++=--++-++=-++421 11 2422 n i i d A B n n n ==+=++ -+∑{}n a 52a 4a a 2434a a ={}n b n (1) 2 n n n S b += *n N ∈11b ={}n a {}n b (2)设,数列的前项和为,求证:;(3)设,求的前项和. 【解答】解:(1)设等比数列的公比为,成等差数列,且满足, , 解得:,.. 数列的前项和,且.时,化为: ,可得.(2)证明:,数列的前项和为,单调递增, ,.(3)设, 设数列的前项和为, 22 12 23n n n n b c b b +++= *n N ∈{}n c n n A 51 3n A <…2(1)[(1)(1)]n n n n n d b a b =-+++{}n d n n T {}n a 0q >52a 4a a 2 434a a =2444224a a q a q ∴=+22333144a q a a a q ==12q = 11 2 a =1 ()2 n n a ∴={}n b n (1) 2n n n S b += *n N ∈11b =2n ∴…11(1)22 n n n n n n n b S S b b --+=-= -1211121 n n b b b b n n -==⋯===-n b n =222222 12 232311 (1)(2)(1)(2)n n n n n c b b n n n n ++++= ==-⋅++++∴{}n c n 2222222 11111111 2334(1)(2)4(2)n A n n n = -+-+⋯+-=- +++n A 11 4 n A A ∴< …∴ 513 n A < (221) (1)[(1)(1)](1)((1)(1)()2n n n n n n n d b a b n n =-+++=-+++⨯-1 {(1)()}2 n n +⨯-n n H 则, ,. 时 , ,的前项和 .时 , ,的 前项和 . 为偶数时,数列的前项和.为奇数时,数列的前项和.13.(2021春•温州期中)设等差数列的前项和为,公差为,已知,.(1)求数列的通项公式; (2)若,求数列的前项和. 【解答】解:(1)由题意得,解得,数列的通项公式为. (2),当为奇数时 , ;23111111 2()3()4(()(1)()22222n n n H n n -=⨯-+⨯-+⨯-+⋯+⨯-++⨯-2341111111 2()3()4()()(1)()222222 n n n H n n +-=⨯-+⨯-+⨯-+⋯+⨯-++⨯-∴2341 111 [1()]311111112 21(()()()(1)()(1)(1222222 221()2 n n n n n H n n ++---=-+-+-+-+⋯+--+⨯-=-+-+⨯---5351()992n n n H +∴=-+⨯-2n k =*k N ∈2{(1)((1)}n n -+n 222222(21)(3) 3254(1)23122 n n n n n B n n n n +++=-+-++-=++⋯+++= = 21n k =-*k N ∈2{(1)((1)}n n -+n 22 2 1(1)(4)34(2)(2)22 n n n n n n B B n n +++++=-+=-+=-n ∴{}n d n (3)5351 (2992 n n n n n T ++= -+⨯-n {}n d n 2345351 ()2992 n n n n n T +++=- -+⨯-{}n a n n S d 11a =39S ={}n a 2 (1)n n n b a =-⋅{}n b n n T 3133339S a d d =+=+=2d ={}n a 12(1)21n a n n =+-=-22 2 2 (21),(1)(1)(21)(21),n n n n n n n b a b n n n ⎧--=-⋅==--=⎨-⎩ 为奇数为偶数n 222222222(1)(123) 13579(23)(21)2(135723)(21)2(21)212 n n n T n n n n n n -+-=-+-+-+⋯+---=++++⋯+---=⨯ --=-+ 当为偶数时 , ,所以. 14.(2021•福建模拟)记为等比数列的前项和,已知,.(1)求; (2)求数列的前项和. 【解答】解:(1)当时,由可得,两式相减,可得,即,依题意,为等比数列,故.令,则由可得,即; (2)由(1)可知为首项等于1,公比等于2的等比数列,故; 故为首项等于,公比等于的等比数列,故, 故数列的前项和. 15.(2021•天心区校级一模)已知等差数列的前项和为,且满足,.(1)求数列的通项公式; (2)若数列满足,求数列的前项和.【解答】解:(1)设等差数列的公差为,则由题意可得,解得, 所以数列的通项公式为;(2)因为, n 2222222(121) 13579(23)(21)2(13572321)222 n n n T n n n n n +-=-+-+-+⋯--+-=++++⋯+-+-=⨯ =2221,2,n n n T n n ⎧-+=⎨⎩ 为奇数 为偶数n S {}n a n 11a =1n n S a t +=+t {(cos )}n n a π⋅n 2n …1n n S a t +=+1n n S a t -=+1n n n a a a +=-12n n a a +={}n a 22a =1n =1n n S a t +=+12S a t =+12121t S a a a =-=-=-{}n a 12n n a -={(cos )}n n a π⋅1-2-1(1)(2)n n a -=-⋅-{(cos )}n n a π⋅n 1(2)11 (2)1(2)33 n n n T -+-==⨯----{}n a n n S 38a =572S a ={}n a {}n b 1cos 2n n n b a n π+=+{}n b 2n 2n T {}n a d 11128 54 52(6)2 a d a d a d +=⎧⎪ ⎨⨯+=+⎪⎩12a =3d ={}n a *23(1)31,n a n n n N =+-=-∈11cos 2(1)2n n n n n n b a n a π++=+=-+ 所以. 16.(2021秋•运城期中)已知正项数列的前项和为,满足, . (1)求数列的通项公式;(2)设 ,求数列的前项和的表达式.【解答】解:(1)正项数列的前项和为,满足,所以, 整理得:,由于数列为正项数列, (常数), 所以 是以1为首项,1为公差的等差数列, ,故, 所以(首项符合通项).由于 , 当为奇数时,为偶数时,所以, 所以.17.(2021秋•郸城县校级月考)已知为数列前项和,.(Ⅰ)求和; (Ⅱ)若,求的值. 23122143221()()()(222) n n n n T a a a a a a +-=-+-+⋯+-+++⋯+22222(12)332412 n n n n +-=+=+--{}n a n n S 2,*)n a n n N =∈…11a ={}n a 1 cos n n n n b n a a π+=g {}n b 2n 2n T {}n a n n S 2,*)n a n n N =+∈…1n n S S --=1)0-=1=11n n =+-=2n S n =121n n n a S S n -=-=-11111 (22121 n n a a n n +=--+111 cos cos [()]22121 n n n n n b n n a a n n ππ+==--+g n cos 1n π=-n cos 1n π=111(1)23b =--2211()235b =-3311 ()257 b =--⋯21232121112121313141412111211((223232525272729243412414141 n n n n n n T b b b b b n n n n n --=+++⋯++=-+⨯+⨯-⨯-⨯+⨯+⨯-⨯+⋯+-+-=- ---++n S {}n a n (2sin )(2cos )2 n n a n n π π+=+4k a 41()k a k Z -∈24n S an bn =+a b - 【解答】(Ⅰ)解:由已知:., 又, . (Ⅱ)又由已知:, 得:,得:. 所以, 解得:,.(2sin )(2cos )2 n n a n n π π+=+4(2sin 2)4(2cos 4)()k a k k k k Z ππ∴+=+∈46()k a k k Z ∴=∈41[2sin(2)](41)[2cos(41)]2k a k k k π ππ-+-=-+-4141k a k -∴=-42[2sin(2)](42)[2cos(42)]k a k k k πππ-+-=-+-4263k a k -=-433[2sin(2)](43)[2cos(43)]2k a k k k πππ-+-=-+-43413 k k a -=-41234812813363 15423369712 33S a b a a a a S a b a a a ⎧ =+=+++=+++⎪⎪⎨⎪=+=++⋯+=+++++++⎪⎩ 263a = 11 3 b =5a b ∴-=