最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

管道水力摩阻系数的计算

来源:动视网 责编:小OO 时间:2025-09-29 21:36:56
文档

管道水力摩阻系数的计算

管道水力摩阻系数的计算Черникин,A.B.Черникин,A.B.:管道水力摩阻系数的计算,油气储运,1999,18(2)26~28。摘要介绍了计算水力摩阻系数λ的通用公式,在分析现有计算摩阻系数公式的基础上,借助于专门的过渡函数,求出了新的通用式。推荐可实际应用于管道水力计算的公式λ=0.11[(Z+ε+C1.4)/(115C+1)]1/4,该公式可完全避免确定液体流动区域的程序,适用于任一雷诺数Re和不同管子相对粗糙度ε,排除了由于自身连续性而导致不同区域边界上λ数值不一致的情况。
推荐度:
导读管道水力摩阻系数的计算Черникин,A.B.Черникин,A.B.:管道水力摩阻系数的计算,油气储运,1999,18(2)26~28。摘要介绍了计算水力摩阻系数λ的通用公式,在分析现有计算摩阻系数公式的基础上,借助于专门的过渡函数,求出了新的通用式。推荐可实际应用于管道水力计算的公式λ=0.11[(Z+ε+C1.4)/(115C+1)]1/4,该公式可完全避免确定液体流动区域的程序,适用于任一雷诺数Re和不同管子相对粗糙度ε,排除了由于自身连续性而导致不同区域边界上λ数值不一致的情况。
管道水力摩阻系数的计算

Черникин,A.B.

Черникин,A.B.:管道水力摩阻系数的计算,油气储运,1999,18(2)26~28。

  摘 要 介绍了计算水力摩阻系数λ的通用公式,在分析现有计算摩阻系数公式的基础上,借助于专门的过渡函数,求出了新的通用式。推荐可实际应用于管道水力计算的公式λ=0.11[(Z+ε+C1.4)/(115 C+1)]1/4,该公式可完全避免确定液体流动区域的程序,适用于任一雷诺数Re和不同管子相对粗糙度ε,排除了由于自身连续性而导致不同区域边界上λ数值不一致的情况。

  主题词 管道  水力摩阻系数  计算  方程

一、管道水力摩阻系数计算的改进

  完善各种管道(原道、天然气管道、水管道等)的水力计算,可以通过提高计算精度或使计算公式通用化等途径来实现。进行水力计算所需重要参数之一,便是水力摩阻系数λ,一般情况下它是以下两个参数的函数:雷诺数Re和管子相对粗糙度ε。依据这些参数的数值,管道内流体流动划分为不同区域(状态),对于每个区域都有计算λ的公式,以及确定区域边界的所谓雷诺数过渡值。

  在分析现有计算系数λ的公式和寻求通用计算式的基础上,借助专门的过渡函数,求得以下形式新的通式:

     

(1)

  这一公式覆盖所有的流动区域,即在管输液体和气体介质时,用于计算任一Re和ε时的λ。公式中的参量具有如下数值:对于液体,α=0.11,C=1.4,γ=68/Re,A=(28 γ)10,B=115,n=4;对于气体介质,α=0.077,C=1.5,γ=79/Re,A=(25 γ)10,B=76,n=5。

  比较式(1)和常用的斯托克斯公式、Aльтшуль公式、俄罗斯天然气科学研究院公式(做为特例,针对不同流动区域,由式(1)很容易求得这些公式)计算λ的结果,它们完全吻合。最大的偏差(不超过1.7%)发生在层流与湍流过渡区边界上。在其它情况下,偏差甚小。

二、计算管道水力摩阻系数的通式

  在进行原油、成品油、水管道水力计算时,摩阻压头损失计算起着重要的作用,并由达西—魏斯巴哈公式确定:

      

(2)

式中 λ——水力摩阻系数;

   L——管道长度;

   D——管道内径;

   W——液体流速;

   g——重力加速度。

  众所周知,式(2)中的系数λ一般情况下是两个参数即雷诺数Re和管子相对粗糙度ε的函数:

(3)

式中 ν——输送液体的运动粘度。

(4)

式中 k——当量绝对粗糙度。

  k表征管道内表面状态,如不均匀度、突起高度、突起形状及其在壁面上的分布密度等。

  依据这些参数,管道中液体的流动可以符合以下五个区域中的某一个:

  (1)层流区;

  (2)层流与湍流的过渡区;

  (3)湍流的水力光滑管区;

  (4)湍流的混合摩擦区;

  (5)湍流的完全粗糙管区(阻力平方区)。

  两百多年实验与理论水力学的发展,提出了计算不同区域λ的一系列公式,以及确定这些区域边界的数量关联式。

  与此同时,在水力学研究中,力图建立所谓万能的或通用的公式,可以立刻描述不同区域λ的变化。这种类型最为成功的表达式之一,就是1939年推荐的K.柯里布卢克公式,它适用于整个湍流区,并且做为管道水力计算的基本公式被世界许多国家采用。在不同的年代,前苏联的研究工作者(Исаев, И. А., Адамов,Г.А.,Френкель,Н.З.,Черникин,В.И.,Фнлоненко,Г.К.,Левин,С.Р.等)推荐了通用公式,其中用于湍流所有区域的Альтшуль,А.Д.公式得到了最广泛的应用。

λT=0.11(Z+ε)0.25

(5)

式中 λT——液体湍流状态下的水力摩阻系数;

   Z=68/Re。

  更加通用的,同时覆盖液体流动所有可能区域的公式,在现有的文献中还没有。下面,提出一种建立λ系数唯一计算式的方法,该计算式将不同流态的基本公式综合起来,构成以下表达式:

  

(6)

  λЛ=/Re(Дж.Г.斯托克斯公式)

(7)

式中 λЛ——液体层流状态下的水力摩阻系数;

  F(Re)——取决于雷诺数的某一过渡函数。

  在工程计算中,当Re≤2 000时,管道中液体的运动处于层流;而当Re≥4 000时,则管道中液体的运动为湍流。在过渡区或所谓过渡边界湍流区(2 000<Re<4 000)系数λ发生急剧跳跃。考虑到这一特点,引进式(6)的函数F应当满足以下要求。在层流区其值应趋近于0,而在湍流区则应趋近于1。下面的关系式完全满足这些要求:

F(Re)=[(AZ)n+1]-1

(8)

式中 n、A——均为常数。

  进而将式(5)、式(7)和式(8)代入式(6),得出如下表达式

(9)

式中 B——由A及n确定的常数。

  式(9)中的常数值n、A和B取决于λ趋近基本公式(5)与式(7)的预期程度。根据过渡函数F所要求的特性,表达式(9)最大相对误差ξmax将发生在层流与湍流区的边界上。表1为ξmax系列数据,引进ε=0和ε=0.01(非常大的相对粗糙度,事实上也是合理采用Aльтшуль公式的边界条件)时n、A及B的计算结果。

表1 n、A和B值
εmax

nAB
ε=0

ε=0.01

ε=0

ε=0.01

ε=0

ε=0.01

0.0111.08011.55644.20444.68728.59529.213
0.02 9.003

 9.485

44.82945.40026.93427.673
0.03 7.756

 8.242

45.37446.01225.72026.556
0.05 6.122

 6.620

46.44347.123.80124.805
0.10 3.695

 4.229

49.94050.79719.96221.371
"

  为便于应用式(9),应选用n、A及B的整数值。由表1可见,这些数值随相对粗糙度ε的变化不大。因此设定最大误差不超过1.5%~2%,可取n=10。此时,根据优化计算,A和B的最优整数将是A=45,B=28,式(9)可转换成以下最终形式: 

(10)

式中 C=(28.Z)10

  当C→0时(湍流),式(10)过渡为式(5),而在层流区(此时与其它项相比,可以忽略1及Z+ε)与斯托克斯公式吻合。当ε=0(Re=4 000)及ε=0.01(Re=2 000)时式(10)给出的最大误差分别为1.6%和1.7%。应当特别强调,随着雷诺数Re由过渡区边界向其两侧偏离,这一本来就小的误差值很快下降并可忽略。

  所求得的公式,同样可以用来描述至今尚很少研究的过渡区λ的跳跃。与一些作者(Есьман,И.Г.、Зайченко,Р.М.、Вулис,Л.А.、Левин,С.Р.、Самойленко,Л.A.和Церлинг,Ю.Н.)推荐的用于这一区域的具有评估特性的公式相比,式(10)具有中等误差,即2%~4%。

  由此可见,所推荐的公式可以完全避免确定液体流动区域的程序,计算中只保留一个表达式(不必收集不同区域的相应公式),适用于任一Re和ε,排除了由于自身连续性而导致不同区域边界上λ数值的不一致,并且具有很高的精度。因此,式(10)可实际应用于管道的水力计算中。

Черникин,A.B. 117296,俄罗斯,莫斯科,B-296,列宁大街,67,132号;电话:(007095546)13703。

作者单位:俄罗斯石油天然气大学

编辑:康力平

(收稿日期:1998-07-15)

文档

管道水力摩阻系数的计算

管道水力摩阻系数的计算Черникин,A.B.Черникин,A.B.:管道水力摩阻系数的计算,油气储运,1999,18(2)26~28。摘要介绍了计算水力摩阻系数λ的通用公式,在分析现有计算摩阻系数公式的基础上,借助于专门的过渡函数,求出了新的通用式。推荐可实际应用于管道水力计算的公式λ=0.11[(Z+ε+C1.4)/(115C+1)]1/4,该公式可完全避免确定液体流动区域的程序,适用于任一雷诺数Re和不同管子相对粗糙度ε,排除了由于自身连续性而导致不同区域边界上λ数值不一致的情况。
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top