数学(文科)
本试卷共4页,21小题,满分150分.考试用时120分钟.
一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设复数满足,其中为虚数单位,则= ( )
A. B. C. D.
2.已知集合为实数,且,为实数,且,则的元素个数为( )
A.4 B.3 C.2 D.1
3.已知向量,若为实数,则= ( )
A. B. C. D.
4 . 函数的定义域是 ( )
A. B. C. D.
5.不等式的解集是( )
A. B
C. D.
6.已知平面直角坐标系上的区域由不等式组给定,若为上的动点,点的坐标为,则的最大值为( )
A.3 B.4 C. D.
7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )
A.20 B.15 C.12 D.10
8.设圆C与圆 外切,与直线 相切.则C的圆心轨迹为( )
A. 抛物线 B. 双曲线 C. 椭圆 D. 圆
9.如图1-3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别为等边三角形、等腰三角形和菱形,则该几何体体积为( )
A. B. C. D. 2
10.设是R上的任意实值函数.如下定义两个函数和;对任意,;.则下列等式恒成立的是( )
A.
B.
C.
D.
二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分.
(一)必做题(11~13题)
11.已知是递增等比数列,则此数列的公比 .
12.设函数若,则 .
13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打时间x(单位:小时)与当于投篮命中率y之间的关系:
时间x | 1 | 2 | 3 | 4 | 5 |
命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(二)选做题(14、15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)已知两曲线参数方程分别为(0≤θ <π=和
(t∈R),它们的交点坐标为 .
15.(几何证明选讲选做题)如图4,在梯形ABCD中,AB∥CD,AB=4,CD=2,E、F分别为AD、BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为 .
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.
16.(本小题满分12分)
已知函数,.
(1)求的值;
(2)设求的值.
17.(本小题满分13分)
在某次测验中,有6位同学的平均成绩为75分.用表示编号为的同学所得成绩,且前5位同学的成绩如下:
编号n | 1 | 2 | 3 | 4 | 5 |
成绩 | 70 | 76 | 72 | 70 | 72 |
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间中的概率.
18.(本小题满分13分)
如图所示将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右平移到的分别为的中点,分别为的中点.
(1)证明:四点共面;
(2)设为中点,延长到,使得,证明:.
19.(本小题满分14分)
设,讨论函数的单调性.
20.(本小题满分14分)
设b>0,数列满足,.
(1)求数列的通项公式;
(2)证明:对于一切正整数n,.
21.(本小题满分14分)
在平面直角坐标系中,直线交轴于点A,设P是上一点,M是线段OP的垂直平分线上一点,且满足.
(1)当点P在上运动时,求点M的轨迹E的方程;
(2)已知.设H是E上动点,求的最小值,并给出此时点H的坐标;
(3)过点且不平行于轴的直线与轨迹E有且只有两个不同的交点,求直线的斜率的取值范围.