1.(2015•新课标Ⅰ)设函数f(x)=e2x﹣alnx.
(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln.
解:(Ⅰ)f(x)=e2x﹣alnx的定义域为(0,+∞),∴f′(x)=2e2x﹣.
当a≤0时,f′(x)>0恒成立,故f′(x)没有零点,
当a>0时,∵y=e2x为单调递增,y=﹣单调递增,∴f′(x)在(0,+∞)单调递增,又f′(a)>0,
假设存在b满足0<b<ln时,且b<,f′(b)<0,故当a>0时,导函数f′(x)存在唯一的零点,
(Ⅱ)由(Ⅰ)知,可设导函数f′(x)在(0,+∞)上的唯一零点为x0,
当x∈(0,x0)时,f′(x)<0,当x∈(x0+∞)时,f′(x)>0,
故f(x)在(0,x0)单调递减,在(x0+∞)单调递增,
所欲当x=x0时,f(x)取得最小值,最小值为f(x0),
由于﹣=0,所以f(x0)=+2ax0+aln≥2a+aln.故当a>0时,f(x)≥2a+aln.
2.(2013•陕西)已知函数f(x)=ex,x∈R.
(Ⅰ) 若直线y=kx+1与f (x)的反函数g(x)=lnx的图象相切,求实数k的值;
(Ⅱ) 设x>0,讨论曲线y=f (x) 与曲线y=mx2(m>0)公共点的个数.
(Ⅲ) 设a<b,比较与的大小,并说明理由.
解:(I)函数f(x)=ex的反函数为g(x)=lnx,∴.
设直线y=kx+1与g(x)的图象相切于点P(x0,y0),则,
解得,k=e﹣2,∴k=e﹣2.
(II)当x>0,m>0时,令f(x)=mx2,化为m=,令h(x)=,则,
则x∈(0,2)时,h′(x)<0,h(x)单调递减;x∈(2,+∞)时,h′(x)>0,h(x)单调递增.
∴当x=2时,h(x)取得极小值即最小值,.
∴当时,曲线y=f (x) 与曲线y=mx2(m>0)公共点的个数为0;
当时,曲线y=f (x) 与曲线y=mx2(m>0)公共点的个数为1;
当时,曲线y=f (x) 与曲线y=mx2(m>0)公共点个数为2.
(Ⅲ) ==
=,
令g(x)=x+2+(x﹣2)ex(x>0),则g′(x)=1+(x﹣1)ex.
g′′(x)=xex>0,∴g′(x)在(0,+∞)上单调递增,且g′(0)=0,
∴g′(x)>0,∴g(x)在(0,+∞)上单调递增,
而g(0)=0,∴在(0,+∞)上,有g(x)>g(0)=0.
∵当x>0时,g(x)=x+2+(x﹣2)•ex>0,且a<b,∴,
即当a<b时,.
3.(2016•新课标Ⅰ)已知函数f(x)=(x﹣2)ex+a(x﹣1)2.
(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.
解:(Ⅰ)由f(x)=(x﹣2)ex+a(x﹣1)2,可得f′(x)=(x﹣1)ex+2a(x﹣1)=(x﹣1)(ex+2a),
①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,
即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);
②当a<0时,(如右下图)若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;
若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).
即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;
若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.
即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;
(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,
且f(1)=﹣e<0,x→+∞,f(x)→+∞;x→﹣∞,f(x)→+∞.f(x)有两个零点;
②当a=0时,f(x)=(x﹣2)ex,所以f(x)只有一个零点x=2;
③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,
在(﹣∞,1),(ln(﹣2a),+∞)递增,
又当x≤1时,f(x)<0,所以f(x)不存在两个零点;
当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,
只有f(ln(﹣2a))等于0才有两个零点而f(x)小于零所以只有一个零点不符题意.
综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).
4.(2015•新课标Ⅰ)已知函数f(x)=x3+ax+,g(x)=﹣lnx
(i)当 a为何值时,x轴为曲线y=f(x)的切线;
(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.
解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,
∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;
(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}<0,
故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,
∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;
若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,
故x=1不是函数h(x)的零点;
当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.
①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,
而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,
当a≥0时,函数f(x)在区间(0,1)内没有零点.
②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.
若>0,即,则f(x)在(0,1)内无零点.
若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.
若<0,即,由f(0)=,f(1)=a+,
∴当时,f(x)在(0,1)内有两个零点.
当﹣3<a时,f(x)在(0,1)内有一个零点.
综上可得:a<时,函数h(x)有一个零点.当时,h(x)有一个零点;
当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.
5.(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)ex﹣x.
(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.
解:(1)由f(x)=ae2x+(a﹣2)ex﹣x,求导f′(x)=2ae2x+(a﹣2)ex﹣1,
当a=0时,f′(x)=﹣2ex﹣1<0,∴当x∈R,f(x)单调递减,
当a>0时,f′(x)=(2ex+1)(aex﹣1)=2a(ex+)(ex﹣),
令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,
∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;
当a<0时,f′(x)=2a(ex+)(ex﹣)<0,恒成立,∴当x∈R,f(x)单调递减,
综上可知:当a≤0时,f(x)在R单调减函数,
当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;
(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,
当a>0时,f(x)=ae2x+(a﹣2)ex﹣x,当x→﹣∞时,e2x→0,ex→0,
∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于ex和x,∴当x→∞,f(x)→+∞,
∴函数有两个零点,f(x)的最小值小于0即可,
由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,
∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,
设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,
∴a的取值范围(0,1).
方法二:(1)由f(x)=ae2x+(a﹣2)ex﹣x,求导f′(x)=2ae2x+(a﹣2)ex﹣1,
当a=0时,f′(x)=﹣2ex﹣1<0,∴当x∈R,f(x)单调递减,
当a>0时,f′(x)=(2ex+1)(aex﹣1)=2a(ex+)(ex﹣),
令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,
∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;
当a<0时,f′(x)=2a(ex+)(ex﹣)<0,恒成立,∴当x∈R,f(x)单调递减,
综上可知:当a≤0时,f(x)在R单调减函数,
当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;
(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,
②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,
当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,
当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,
当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,
故f(x)在(﹣∞,﹣lna)有一个零点,
假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,
由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.
∴a的取值范围(0,1).