一.基本不等式的常用变形
1.若,则 (当且仅当时取“=”);若,则 (当且仅当
_____________时取“=”)
若,则 (当且仅当____________时取“=”)
2.若,则 (当且仅当____________时取“=”)
若,则 (当且仅当_________时取“=”)
注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.
(2)求最值的重要条件“一正,二定,三取等”
二、利用基本不等式求最值的技巧:
技巧一:直接求:
例1 已知,且满足,则xy的最大值为 ________。
解:因为x>0,y>0,所以(当且仅当,即x=6,y=8时取等号),于是,,故xy的最大值3.
变式:若,求的最小值.并求x,y的值
解:∵ 即xy=16
当且仅当x=y时等号成立
技巧二:配凑项求
例2:已知,求函数的最大值。
解:,
当且仅当,即时,上式等号成立,故当时,。
例3. 当时,求的最大值。
解:
当,即x=2时取等号 当x=2时,的最大值为8。
变式:设,求函数的最大值。
解:∵∴∴
当且仅当即时等号成立。
例4. 求的值域。
解:
当,即时,(当且仅当x=1时取“=”号)。
练习:1、已知,求函数的最大值.;
2、,求函数
技巧三:“1”的巧妙利用
错解:,且, 故 。
错因:解法中两次连用基本不等式,在等号成立条件是,在等号成立条件是即,取等号的条件的不一致,产生错误。因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。
正解:,
当且仅当时,上式等号成立,又,可得时, 。
变式: (1)若且,求的最小值
(2)已知且,求的最小值
2:已知,且,求的最小值。
(3) 设若的最小值为( ).
.8.4. .
解析:因为,所以。
又所以,当且仅当即时取“=”。故选(B).
技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数的单调性。例:求函数的值域。
解:令,则
因,但解得不在区间,故等号不成立,考虑单调性。
因为在区间单调递增,所以在其子区间为单调递增函数,故。
所以,所求函数的值域为。
练习.求下列函数的最小值,并求取得最小值时,x 的值.
(1) (2) (3)
的最大值.
技巧六、已知x,y为正实数,且x 2+=1,求x的最大值.
分析:因条件和结论分别是二次和一次,故采用公式ab≤。
同时还应化简中y2前面的系数为 , x=x =x·
下面将x,分别看成两个因式:
x·≤== 即x=·x ≤
技巧七:已知a,b为正实数,2b+ab+a=30,求函数y=的最小值.
分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。
法一:a=, ab=·b=
由a>0得,0<b<15
令t=b+1,1<t<16,ab==-2(t+)+34∵t+≥2=8
∴ ab≤18 ∴ y≥ 当且仅当t=4,即b=3,a=6时,等号成立。
法二:由已知得:30-ab=a+2b∵ a+2b≥2 ∴ 30-ab≥2
令u= 则u2+2u-30≤0, -5≤u≤3
∴≤3,ab≤18,∴y≥
点评:①本题考查不等式的应用、不等式的解法及运算能力;②如何由已知不等式出发求得的范围,关键是寻找到之间的关系,由此想到不等式,这样将已知条件转换为含的不等式,进而解得的范围.
变式:1.已知a>0,b>0,ab-(a+b)=1,求a+b的最小值。
2.若直角三角形周长为1,求它的面积最大值。
技巧八、取平方
5、已知x,y为正实数,3x+2y=10,求函数W=+的最值.
解法一:若利用算术平均与平方平均之间的不等关系,≤,本题很简单
+ ≤==2
解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。
W>0,W2=3x+2y+2·=10+2·≤10+()2·()2 =10+(3x+2y)=20
∴ W≤=2
变式: 求函数的最大值。
解析:注意到与的和为定值。
又,所以
当且仅当=,即时取等号。 故。
评注:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件。
总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式。