一、选择题
1.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )
A .15.5,15.5
B .15.5,15
C .15,15.5
D .15,15
【答案】D 【解析】 【分析】 【详解】
根据图中信息可知这些队员年龄的平均数为:
132146158163172181
268321
⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,
该足球队共有队员2+6+8+3+2+1=22人,
则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .
2.某射击运动员在训练中射击了10次,成绩如图所示:
下列结论不正确的是( ) A .众数是8 B .中位数是8
C .平均数是8.2
D .方差是1.2
【答案】D 【解析】 【分析】
首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差. 【详解】
众数是8,中位数是8,平均数是102+92+83+72+61
=8.2
10
⨯⨯⨯⨯⨯
方差是
22222
2(108.2)2(98.2)3(88.2)2(78.2)(68.2)
1.56
10
⨯-+⨯-+⨯-+⨯-+-
=
故选D
【点睛】
本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.
3.某青年排球队12名队员的年龄情况如下:
则12名队员的年龄()
A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁
C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁
【答案】D
【解析】
【分析】
中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).
【详解】
解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.
【点睛】
理解中位数和众数的定义是解题的关键.
4.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数x和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择()
A.队员1 B.队员2 C.队员3 D.队员4
【答案】B
【解析】
【分析】
根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案.
【详解】
解:因为队员1和2的方差最小,所以这俩人的成绩较稳定,
但队员2平均数最小,所以成绩好,即队员2成绩好又发挥稳定.
故选B.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表
对他们的训练成绩作如下分析,其中说法正确的是()
A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同
C.他们训练成绩的众数不同D.他们训练成绩的方差不同
【答案】D
【解析】
【分析】利用方差的定义、以及众数和中位数的定义分别计算即可得出答案.
【详解】∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,
∴甲成绩的平均数为67810
6
+++++
=8,中位数为
88
2
+
=8、众数为8,
方差为1
6
×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=
5
3
,
∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,
∴乙成绩的平均数为7788
6
+++++
=
47
6
,中位数为
88
2
+
=8、众数为8,
方差为
1
6×[2×(7﹣476)2+3×(8﹣476)2+(9﹣476
)2]= 1736,
则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同, 故选D .
【点睛】本题考查了中位数、方差以及众数的定义等知识,熟练掌握相关定义以及求解方法是解题的关键.
6.甲、乙两位运动员在相同条件下各射击10次,成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10.根据上述信息,下列结论错误的是( ) A .甲、乙的众数分别是8,7 B .甲、乙的中位数分别是8,8 C .乙的成绩比较稳定 D .甲、乙的平均数分别是8,8
【答案】C 【解析】 【分析】
分别根据众数,平均数,中位数和方差的概念以及计算方法计算出结果,然后进行判断. 【详解】
在甲的10次射击成绩中8环出现次数最多,有4次,故众数是8,而乙的10次射击成绩中7环出现次数最多,故众数是7,因此选项A 说法正确,不符合题意;
甲的10次射击成绩按大小顺序排列为:5,7,7,8,8,8,8,9,10,10,故其中位数为:
8+8
=82
; 乙的10次射击成绩按大小顺序排列为:5,7,7,7,8,8,9,9,10,10,故其中位数为:8+8
=82
,所以甲、乙的中位数分别是8,8,故选项B 说法正确,不符合题意; 甲的平均数为:
5+72+84+9+102
=810
⨯⨯⨯;乙的平均数:
5+73+82+92+102
=810
⨯⨯⨯⨯,所以,甲、乙的平均数分别是8,8,故选项D 不符合题
意;
甲组数据的方差为:
2222221
=
[(58)2(78)4(88)(98)2(108)]10
S -+⨯-+⨯-+-+⨯-甲=2; 乙组数据的方差为:
2222221
=
[(58)3(78)2(88)2(98)2(108)]10
S -+⨯-+⨯-+⨯-+⨯-乙=2.2;所以甲乙两组数据的方差不相等,甲的成绩更稳定,故选项C 符合题意. 故选:C. 【点睛】
本题考查了平均数、中位数、众数和方差的定义.方差是用来衡量一组数据波动大小的
7.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()
A.3,2 B.3,4 C.5,2 D.5,4
【答案】B
【解析】
试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:
;新的方差:
,故选
B.
考点:平均数;方差.
8.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()
A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6
【答案】D
【解析】
【分析】
根据平均数、中位数、众数以及方差的定义判断各选项正误即可.
【详解】
A、数据中5出现2次,所以众数为5,此选项正确;
B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;
C、平均数为(7+5+3+5+10)÷5=6,此选项正确;
D、方差为1
5
×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;
故选:D.
【点睛】
本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.
9.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:
品种甲乙丙
若从这三个品种中选择一个在该地区推广,则应选择的品种是()
A.甲B.乙C.丙D.甲、乙中任选一个【答案】A
【解析】
【分析】
根据平均数、方差等数据的进行判断即可.
【详解】
根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.
故选:A
【点睛】
本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.
10.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:
则下列叙述正确的是()
A.这些运动员成绩的众数是 5
B.这些运动员成绩的中位数是 2.30
C.这些运动员的平均成绩是 2.25
D.这些运动员成绩的方差是 0.0725
【答案】B
【解析】
【分析】
根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.
【详解】
由表格中数据可得:
A、这些运动员成绩的众数是2.35,错误;
B、这些运动员成绩的中位数是2.30,正确;
C、这些运动员的平均成绩是 2.30,错误;
D、这些运动员成绩的方差不是0.0725,错误;
故选B.
【点睛】
考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()
A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5
【答案】A
【解析】
试题分析:根据众数和中位数的定义求解可得.
解:由表可知25出现次数最多,故众数为25;
12个数据的中位数为第6、7个数据的平均数,故中位数为2525
2
=25,
故选:A.
12.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.
1
5
×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]
=1
5
×(0.01+0+0.01+0+0)
=1
5
×0.02
=0.004
∴这组数据的方差是0.004,
∴选项D不符合题意.
故选B.
【点睛】
此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.13.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:
某同学分析上表后得到如下结论:
①甲、乙两班学生平均成绩相同;
为优秀)
②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150
③甲班成绩的波动比乙班大.
上述结论中正确的是()
A.①②③B.①②C.①③D.②③
【答案】A
【解析】
【分析】
平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.
【详解】
从表中可知,平均字数都是135,①正确;
甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;
甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.
①②③都正确.
故选:A.
【点睛】
此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
14.下列关于统计与概率的知识说法正确的是()
A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件
B.检测100只灯泡的质量情况适宜采用抽样调查
C.了解北京市人均月收入的大致情况,适宜采用全面普查
D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数
【答案】B
【解析】
【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.
【详解】
解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;
B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;
C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;
D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;
故选B.
【点睛】
本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.
15.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()
A.96分,98分B.97分,98分C.98分,96分D.97分,96分
【答案】A
【解析】
【分析】
利用众数和中位数的定义求解.
【详解】
98出现了9次,出现次数最多,所以数据的众数为98分;
共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分.
故选A.
【点睛】
本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.
16.下列说法中正确的是().A.“打开电视,正在播放《新闻联播》”是必然事件
B.一组数据的波动越大,方差越小
C.数据1,1,2,2,3的众数是3
D.想了解某种饮料中含色素的情况,宜采用抽样调查
【答案】D
【解析】
试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.
故选D.
考点:全面调查与抽样调查;众数;方差;随机事件.
17.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()
A.平均数B.方差C.众数D.中位数
【答案】B
【解析】
【分析】
平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.
【详解】
解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】
考核知识点:均数、众数、中位数、方差的意义.
18.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:
则这30个参赛队决赛成绩的中位数和众数分别是()
A.9.7,9.5 B.9.7,9.9 C.9.6,9.5 D.9.6,9.6
【答案】C
【解析】
【分析】
根据众数和中位数的定义求解可得.
【详解】
解:由表知,众数为9.5分,中位数为=9.6(分),
故选:C . 【点睛】
考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
19.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,2
1s ,若此同学的得分恰好为x ,则( ) A .1x x <,2
2
1s s = B .1x x =,22
1s s > C .1x x =,2
2
1s s < D .1x x =,2
2
1s s =
【答案】B 【解析】 【分析】
根据平均数和方差的公式计算比较即可. 【详解】
设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n , 第i 个同学没登录, 第一次计算时总分是(n−1)x , 方差是s 2=
1
1
n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n
-+=x ,
方差s 12=
1
n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n
-s 2, 故2
2
1s s >, 故选B . 【点睛】
此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.
20.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是( ) A .四位同学身高的中位数一定是其中一位同学的身高 B .丁同学的身高一定高于其他三位同学的身高 C .丁同学的身高为1.71米 D .四位同学身高的众数一定是1.65
【解析】
【分析】
根据平均数,中位数,众数的定义求解即可.
【详解】
解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;
B、丁同学的身高一定高于其他三位同学的身高,错误;
C、丁同学的身高为1.654 1.633 1.71
⨯-⨯=米,正确;
D.四位同学身高的众数一定是1.65,错误.
故选:C.
【点睛】
本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键.