最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

基于C-NCAP的SPARK整车碰撞仿真分析总结报告

来源:动视网 责编:小OO 时间:2025-09-27 11:44:56
文档

基于C-NCAP的SPARK整车碰撞仿真分析总结报告

基于C-NCAP的SPARK整车碰撞仿真分析总结报告一、概述整车碰撞仿真通过对模拟结果进行分析,找出整车结构中存在的问题,为基于改善整车碰撞特性的结构优化提供依据。同时,通过比较优化方案与初始方案的碰撞仿真结果,说明优化方案在整车碰撞特性上的改善效果。SPARK整车仿真分析主要是针对中国新车评价规程C-NCAP进行的。鉴于07年8月份SPARK的C-NCAP正式试验得分成绩,正碰与侧碰是失分较多的项目,为达到C-NCAP三星级,进行了SPARK的正碰与侧碰有限元仿真分析,将计算结果与试验结果进
推荐度:
导读基于C-NCAP的SPARK整车碰撞仿真分析总结报告一、概述整车碰撞仿真通过对模拟结果进行分析,找出整车结构中存在的问题,为基于改善整车碰撞特性的结构优化提供依据。同时,通过比较优化方案与初始方案的碰撞仿真结果,说明优化方案在整车碰撞特性上的改善效果。SPARK整车仿真分析主要是针对中国新车评价规程C-NCAP进行的。鉴于07年8月份SPARK的C-NCAP正式试验得分成绩,正碰与侧碰是失分较多的项目,为达到C-NCAP三星级,进行了SPARK的正碰与侧碰有限元仿真分析,将计算结果与试验结果进
基于C-NCAP的SPARK整车碰撞仿真分析总结报告

一、概述

整车碰撞仿真通过对模拟结果进行分析,找出整车结构中存在的问题,为基于改善整车碰撞特性的结构优化提供依据。同时,通过比较优化方案与初始方案的碰撞仿真结果,说明优化方案在整车碰撞特性上的改善效果。

SPARK整车仿真分析主要是针对中国新车评价规程C-NCAP进行的。鉴于07年8月份SPARK的C-NCAP正式试验得分成绩,正碰与侧碰是失分较多的项目,为达到C-NCAP三星级,进行了SPARK的正碰与侧碰有限元仿真分析,将计算结果与试验结果进行对照以验证SPARK整车有限元模型的准确性,在此基础上进行了相应的优化与改进。

前处理软件:HyperMesh;

计算软件:Ls-Dyna;

后处理软件:HyperView。

二、SPARK整车有限元模型统计

1、整车与各总成模型

整车有限元模型

五门一盖总成

白车身总成

底盘及座椅备胎总成

侧碰台车总成

2、SPARK整车有限元模型统计表

3、单元统计表

单元类型单元名称单元属性模拟对象数量
标量单元AccelerometerN/A加速度计22
JointN/A铰链连接28
MassN/A集中质量3
RigidN/A刚性连接1653
一维单元Beam*Section_beam焊点连接5111
发动机悬置3
Spring*Section_discrete前后悬4
二维单元Tria3*Section_shell薄板钣金件499
Quad4*Section_shell薄板钣金件737403
三维单元Penta6*Section_solid实体件44
Hex8*Section_solid实体件15816
由上表可知,SPARK整车模型中绝大部分单元为壳单元,且三角形单元的比率只占了6.34%,远远低于汽车碰撞有限元中的上限15%,能保证仿真精度。

4、材料统计表

材料编号材料名称模拟对象数量
MATL1*MAT_ELASTIC弹性件、风挡玻璃11
MATL3*MAT_PLASTIC_KINEMATIC内饰7
MATL9*MAT_NULL实体单元表面壳3
MATL20*MAT_RIGID变形较小零件41
MATL24*MAT_PIECEWISE_LINEAR

_PLASTICITY

薄板钣金件等110
MATL26*MAT_HONEYCOMB蜂窝铝12
MATL57*MAT_LOW_DENSITY_FOAM蜂窝铝、泡沫1
MATL67*MAT_NONLINEAR_ELASTIC

_DISCRETE_BEAM

发动机悬置衬套4
MATL100*MAT_SPOTWELD焊点5
SB_MAT*MAT_SEATBELT安全带1
SDMAT1*MAT_SPRING_ELASTIC排气管悬挂1
SDMAT4*MAT_SPRING_NONLINEAR

_ELASTIC

悬挂弹簧2
SDMAT5*MAT_DAMPER_NONLINEAR

_VISCOUS

悬挂阻尼1
5、坐标系统计表

名称原点坐标

模拟对象
全局坐标系

(0,0,0)

汽车设计坐标系
局部坐标系(437,134,-100)

发动机质心位置
(600,-685,-226)

左前轮毂质心位置
(600,685,-226)

右前轮毂质心位置
(2935,-667,-225)

左后轮毂质心位置
(2935,667,-225)

右后轮毂质心位置
6、刚性墙统计表

编号原点坐标模拟对象摩擦系数
1(600,-691,-272)

地面0.9
2(-106,5,23)

正碰刚性墙0.5
7、接触统计表

编号名称模拟对象
1*RIGIDWALL_PLANAR_1

轮胎与地面接触

2*RIGIDWALL_PLANAR_2

整车与刚性墙接触
3*CONTACT_AUTOMATIC

_SINGLE_SURFACE

所有零件间的接触
4*CONTACT_SPOTWELD焊点与零件间的接触
8、质量统计表

SPARK整车装备质量

870kg
假人质量75kg
侧碰台车质量950kg
9、初始载荷统计表

类型名称描述
加速度*LOAD_BODY_Z

Z轴负方向,9.8m/s2

速度*INITIAL_VELOCITY

_GENERATION

正碰整车X轴正方向,13.8m/s

侧碰台车Y轴正方向,13.8m/s

10、发动机质心及悬置点坐标统计表

XYZ
COG427.455.9228.7
Crank shaft center406.3794.35144.18
RHS Mounting416.4429356.4
LHS Mounting495-404341.9
Reaction rod PT674.1-36.8-28
Reaction rod Body854.1-36.8-24.1
11、发动机特性统计表

XYZ
Weight [kg]126.3
MOI [kg.mm**2]

inertia frame -CG

CG euler angle - (0,0,0)

6.65E+06--
-1.71E+054.07E+06-
-2.49E+051.13E+065.52E+06
三、仿真分析结果验证及改进(见方案报告)

1、正碰验证

变形对比

B柱加速度曲线对比

2、侧碰验证

变形对比

B柱速度曲线对比

四、汽车碰撞CAE中影响仿真精度的因素

1、零件的筛选

根据对碰撞结果的贡献大小(吸能大小)将零件分为影响较大与较小两类。对于前者我们将其列为必需的模型,而且需要对其进行精确建模;对于影响较小甚至无影响的零件则只要求确定其与另外零件的连接(如焊接),正确定义其边界,然后可以将其划分为较大尺寸单元甚至忽略。

2、CAD模型转化为有限元模型的几何清理

由于有限元取代CAD数模本身就是以直代曲的过程,受有限单元的尺寸要求,需要将CAD模型中的一些细节特征去掉,如尺寸很小的安装孔,圆角等。

3、有限元网格质量

  由于在碰撞仿真过程中实体单元进行计算时很容易出现负体积而使计算终止,一般来说我们期望建模过程中所有单元均为壳单元,壳单元尽又可能建成四边形单元,因为如果模型中三角形单元过多会引起零件局部刚度过硬引起计算失准。四边形单元网格质量又受很多参数控制,如下(GM公司应用标准):

Sample Criteria file for models with 10mm average element size

 #    Criterion     On  Wt   Ideal    Good    Warn    Fail   Worst 

 0 penalty value               0.00    0.00    0.80     1.00     10.00 

 1 min length        1   2    10.00   8.00    6.00     5.00     3.00 

 2 max length       1   1    10.00   15.00    25.00   30.00     50.00 

 3 aspect ratio       1   2    1.00    1.50     2.00    3.00       4.00 

 4 warpage          1   2    0.00    5.00    14.00   15.00      20.00 

 5 max angle quad    1   2    90.00   110.00  130.00  135.00     145.00 

 6 min angle quad    1   2    90.00   70.00    50.00   45.00     40.00 

 7 max angle tria     1   2    60.00   80.00   105.00   110.00    120.00 

 8 min angle tria     1   2    60.00   50.00   30.00    25.00      20.00 

 9 skew            1   2    0.00    10.00   55.00    60.00      90.00 

10 jacobian          1   2    1.00    0.90    0.70    0.60       0.50 

11 chordal dev       1   1    0.00    0.30    0.80     1.00      2.00 

12 % of trias         1   1    2.00    6.00   12.00    15.00      20.00

4、各零件的连接关系

车身大部分均为钣金件,主要的连接关系为焊接,车身和底盘的连接有螺纹连接、铰接、弹性及阻尼连接等。分析时如果对焊点定义为刚性连接势必会影响碰撞过程的变形形状和次序,所以得给出焊点的失效条件,包括失效的剪切力和拉伸力等。

5、材料参数的设置

由于汽车碰撞过程涉及到大变形、大位移、大转角等强非线性问题,那么很多材料仅仅定义一个应力--应变曲线还不足以模拟整个碰撞过程,这就涉及到率相关材料的定义、加工成型的影响和材料实效的模拟等。

6、运动机构的模拟

运动机构包括转向、悬架系统,碰撞过程中运动机构的运动将影响到其它部件的受力或力的传递,从而降低仿真精度。

7、初始穿透的调节

Ls_Dyna的接触算法用的是对称罚函数法,如果模型存在初始穿透,在相应的单元节点处会穿透力及滑移界面能,这将在很大程度上影响计算的精度,故须消除初始穿透。

8、单元的畸变问题

在汽车碰撞分析过程中,需要计算应力和应变的单元的形状非常重要,虽然零件(变形件)的初始网格可能是很理想的,但在碰撞中这些网格很有可能出现大扭曲等畸变现象,这将使仿真精度大打折扣。汽车碰撞过程中,大约70%的动能是由纵梁等关键吸能部件吸收的,这些部件吸能后会形成大量折叠区,这些折叠区域存在大量的扭曲单元。而正是这些折叠区域的模拟决定了整个仿真过程的精度。

9、复杂模型中单元几分的阶

  汽车碰撞分析中,低阶积分极易引起零能变形模式(沙漏),积分结果不精确,很有可能得不到正确的解。而高阶积分不仅会增加分析成本,而且虽然计算结果能满足收敛性准则,但由有限元分析的位移公式只能给出所研究问题的“精确”应变能的下一个界,从物理概念上说,位移公式将导致偏高的系统刚度。

文档

基于C-NCAP的SPARK整车碰撞仿真分析总结报告

基于C-NCAP的SPARK整车碰撞仿真分析总结报告一、概述整车碰撞仿真通过对模拟结果进行分析,找出整车结构中存在的问题,为基于改善整车碰撞特性的结构优化提供依据。同时,通过比较优化方案与初始方案的碰撞仿真结果,说明优化方案在整车碰撞特性上的改善效果。SPARK整车仿真分析主要是针对中国新车评价规程C-NCAP进行的。鉴于07年8月份SPARK的C-NCAP正式试验得分成绩,正碰与侧碰是失分较多的项目,为达到C-NCAP三星级,进行了SPARK的正碰与侧碰有限元仿真分析,将计算结果与试验结果进
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top