泊松分布
概率质量函数
累积分布函数
参数
支撑集
概率質量函數
累积分布函数
期望值
中位数
众数
方差
偏度
峰度
信息熵
动差生成函数
特性函数
泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。
泊松分布的概率质量函数为:
泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。
性质
服从泊松分布的随机变量,其数学期望与方差相等,同为参数λ: E(X)=V(X)=λ
动差生成函数:
泊松分布的来源
在二项分布的伯努力试验中,如果试验次数n很大,二项分布的概率p很小,而乘积λ= n p比较适中,则事件出现的次数的概率可以用泊松分布来逼近。这在现实世界中是很常见的现象,如DNA 序列的变异、放射性原子核的衰变、电话交换机收到的来电呼叫、公共汽车站候车情况等等。
证明如下。首先,回顾e的定义:
二项分布的定义:
如果令p = λ / n, n趋于无穷时P的极限:
[编辑] 最大似然估计
给定n个样本值k i,希望得到从中推测出总体的泊松分布参数λ的估计。为计算最大似然估计值, 列出对数似然函数:
对函数L取相对于λ的导数并令其等于零:
解得λ从而得到一个驻点(stationary point):
[编辑] 例子
对某公共汽车站的客流做调查,统计了某天上午10:30到11:47来到候车的乘客情况。假定来到候车的乘客各批(每批可以是1人也可以是多人)是互相发生的。观察每20秒区间来到候车的乘客批次,共得到230个观察记录。其中来到0批、1批、2批、3批、4批及4批以上的观察记录分别是100个、81个、34个、9个、6个。使用极大似真估计(MLE),得到λ的估计为0.8696。实际上各批次发生的频率与λ = 0.87的泊松分布吻合的非常好。