最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2015届中考数学压轴题精练:因动点产生的相似三角形问题(含2014试题...

来源:动视网 责编:小OO 时间:2025-09-28 21:07:46
文档

2015届中考数学压轴题精练:因动点产生的相似三角形问题(含2014试题...

2015届中考数学压轴题精练专题:因动点产生的相似三角形问题例12014年上海市中考第24题如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.思路点拨1.第(2)题把求∠AOM的大小,转化为求∠BOM的大小.2.因为∠BOM=∠ABO=30°,因此点C在点B的右侧时,恰好有∠AB
推荐度:
导读2015届中考数学压轴题精练专题:因动点产生的相似三角形问题例12014年上海市中考第24题如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.思路点拨1.第(2)题把求∠AOM的大小,转化为求∠BOM的大小.2.因为∠BOM=∠ABO=30°,因此点C在点B的右侧时,恰好有∠AB
 2015届中考数学压轴题精练专题:因动点产生的相似三角形问题 

例1  2014年上海市中考第24题

如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.

(1)求这条抛物线的表达式;

(2)连结OM,求∠AOM的大小;

(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.

思路点拨

1.第(2)题把求∠AOM的大小,转化为求∠BOM的大小.

2.因为∠BOM=∠ABO=30°,因此点C在点B的右侧时,恰好有∠ABC=∠AOM.

3.根据夹角相等对应边成比例,分两种情况讨论△ABC与△AOM相似.

满分解答

(1)如图2,过点A作AH⊥y轴,垂足为H.

在Rt△AOH中,AO=2,∠AOH=30°,

所以AH=1,OH=.所以A.

因为抛物线与x轴交于O、B(2,0)两点,

设y=ax(x-2),代入点A,可得.                                                

所以抛物线的表达式为.

(2)由,

得抛物线的顶点M的坐标为.所以.

所以∠BOM=30°.所以∠AOM=150°.

(3)由A、B(2,0)、M,

得,,.

所以∠ABO=30°,.

因此当点C在点B右侧时,∠ABC=∠AOM=150°.图3             图4

△ABC与△AOM相似,存在两种情况:

①如图3,当时,.此时C(4,0).

②如图4,当时,.此时C(8,0).      图5

考点伸展

在本题情境下,如果△ABC与△BOM相似,求点C的坐标.

如图5,因为△BOM是30°底角的等腰三角形,∠ABO=30°,因此△ABC也是底角为30°的等腰三角形,AB=AC,根据对称性,点C的坐标为(-4,0).

 例2  2014年苏州市中考第29题

如图1,已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.

(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);

(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;

(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

图1

思路点拨

1.第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等.

2.联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示.

3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A与x轴垂直的直线上.

满分解答

(1)B的坐标为(b, 0),点C的坐标为(0,).

(2)如图2,过点P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,那么△PDB≌△PEC.

因此PD=PE.设点P的坐标为(x, x).

如图3,联结OP.

所以S四边形PCOB=S△PCO+S△PBO==2b.

解得.所以点P的坐标为().

图2                                 图3

(3)由,得A(1, 0),OA=1.

①如图4,以OA、OC为邻边构造矩形OAQC,那么△OQC≌△QOA.

当,即时,△BQA∽△QOA.

所以.解得.所以符合题意的点Q为().

②如图5,以OC为直径的圆与直线x=1交于点Q,那么∠OQC=90°。

因此△OCQ∽△QOA.

当时,△BQA∽△QOA.此时∠OQB=90°.

所以C、Q、B三点共线.因此,即.解得.此时Q(1,4).

图4                               图5

考点伸展

第(3)题的思路是,A、C、O三点是确定的,B是x轴正半轴上待定的点,而∠QOA与∠QOC是互余的,那么我们自然想到三个三角形都是直角三角形的情况.

这样,先根据△QOA与△QOC相似把点Q的位置确定下来,再根据两直角边对应成比例确定点B的位置.

如图中,圆与直线x=1的另一个交点会不会是符合题意的点Q呢?

如果符合题意的话,那么点B的位置距离点A很近,这与OB=4OC矛盾.

例3  2012年黄冈市中考模拟第25题

如图1,已知抛物线的方程C1: (m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.

(1)若抛物线C1过点M(2, 2),求实数m的值;

(2)在(1)的条件下,求△BCE的面积;

(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;

(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

                               图1

思路点拨

1.第(3)题是典型的“牛喝水”问题,当H落在线段EC上时,BH+EH最小.

2.第(4)题的解题策略是:先分两种情况画直线BF,作∠CBF=∠EBC=45°,或者作BF//EC.再用含m的式子表示点F的坐标.然后根据夹角相等,两边对应成比例列关于m的方程.

满分解答

(1)将M(2, 2)代入,得.解得m=4.

(2)当m=4时,.所以C(4, 0),E(0, 2).

所以S△BCE=.

(3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时,BH+EH最小.

设对称轴与x轴的交点为P,那么.

因此.解得.所以点H的坐标为.

(4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.

由于∠BCE=∠FBC,所以当,即时,△BCE∽△FBC.

设点F的坐标为,由,得.

解得x=m+2.所以F′(m+2, 0).

由,得.所以.

由,得.

整理,得0=16.此方程无解.

图2                  图3                   图4

②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,

由于∠EBC=∠CBF,所以,即时,△BCE∽△BFC.

在Rt△BFF′中,由FF′=BF′,得.

解得x=2m.所以F′.所以BF′=2m+2,.

由,得.解得.

综合①、②,符合题意的m为.

考点伸展

第(4)题也可以这样求BF的长:在求得点F′、F的坐标后,根据两点间的距离公式求BF的长.

例4  2014年义乌市中考第24题

如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).

(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;

(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;

(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

    

             图1                          图2

思路点拨

1.第(2)题用含S的代数式表示x2-x1,我们反其道而行之,用x1,x2表示S.再注意平移过程中梯形的高保持不变,即y2-y1=3.通过代数变形就可以了.

2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.

3.第(3)题的示意图,不变的关系是:直线AB与x轴的夹角不变,直线AB与抛物线的对称轴的夹角不变.变化的直线PQ的斜率,因此假设直线PQ与AB的交点G在x轴的下方,或者假设交点G在x轴的上方.

满分解答

(1)抛物线的对称轴为直线,解析式为,顶点为M(1,).

(2) 梯形O1A1B1C1的面积,由此得到.由于,所以.整理,得.因此得到.

当S=36时, 解得此时点A1的坐标为(6,3).

(3)设直线AB与PQ交于点G,直线AB与抛物线的对称轴交于点E,直线PQ与x轴交于点F,那么要探求相似的△GAF与△GQE,有一个公共角∠G.

在△GEQ中,∠GEQ是直线AB与抛物线对称轴的夹角,为定值.

在△GAF中,∠GAF是直线AB与x轴的夹角,也为定值,而且∠GEQ≠∠GAF.

因此只存在∠GQE=∠GAF的可能,△GQE∽△GAF.这时∠GAF=∠GQE=∠PQD.

由于,所以.解得.

  

         图3                              图4

考点伸展

第(3)题是否存在点G在x轴上方的情况?如图4,假如存在,说理过程相同,求得的t的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.

例5   2013年临沂市中考第26题

如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.

(1)求此抛物线的解析式;

(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由;

(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.

思路点拨

1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.

2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长.

3.按照两条直角边对应成比例,分两种情况列方程.

4.把△DCA可以分割为共底的两个三角形,高的和等于OA.

满分解答

(1)因为抛物线与x轴交于A(4,0)、B(1,0)两点,设抛物线的解析式为,代入点C的 坐标(0,-2),解得.所以抛物线的解析式为.

(2)设点P的坐标为.

①如图2,当点P在x轴上方时,1<x<4,.

如果,那么.解得不合题意.

如果,那么.解得.

此时点P的坐标为(2,1).

②如图3,当点P在点A的右侧时,x>4,.

解方程,得.此时点P的坐标为.

解方程,得不合题意.

③如图4,当点P在点B的左侧时,x<1,.

解方程,得.此时点P的坐标为.

解方程,得.此时点P与点O重合,不合题意.

综上所述,符合条件的 点P的坐标为(2,1)或或.

    

图2              图3              图4               图5             图6

(3)如图5,过点D作x轴的垂线交AC于E.直线AC的解析式为.

设点D的横坐标为m,那么点D的坐标为,点E的坐标为.所以.

因此.

当时,△DCA的面积最大,此时点D的坐标为(2,1).

考点伸展

第(3)题也可以这样解:

如图6,过D点构造矩形OAMN,那么△DCA的面积等于直角梯形CAMN的面积减去△CDN和△ADM的面积.

设点D的横坐标为(m,n),那么

由于,所以.

例6   2014年苏州市中考第29题

图1

思路点拨

1.求等腰直角三角形OAB斜边上的高OH,解直角三角形POH求k、b的值.

2.以DN为边画正方形及对角线,可以体验到,正方形的顶点和对角线的交点中,有符合题意的点E,写出点E的坐标,代入抛物线的解析式就可以求出a.

3.当E在x轴上方时,∠GNP=45°,△POB∽△PGN,把转化为.

4.当E在x轴下方时,通过估算得到大于10.

满分解答(1),.

(2)由抛物线的解析式,得

点M的坐标为,点N的坐标为.

因此MN的中点D的坐标为(2,0),DN=3.

因为△AOB是等腰直角三角形,如果△DNE与△AOB相似,那么△DNE也是等腰直角三角形.

①如图2,如果DN为直角边,那么点E的坐标为E1(2,3)或E2(2,-3).

将E1(2,3)代入,求得.

此时抛物线的解析式为.

将E2(2,-3)代入,求得.

此时抛物线的解析式为.

②如果DN为斜边,那么点E的坐标为E3或E4.

将E3代入,求得.

此时抛物线的解析式为.

将E4代入,求得.

此时抛物线的解析式为.

       

图2                                 图3

对于点E为E1(2,3)和E3,直线NE是相同的,∠ENP=45°.

又∠OBP=45°,∠P=∠P,所以△POB∽△PGN.

因此.

对于点E为E2(2,-3)和E4,直线NE是相同的.

此时点G在直线的右侧,.

又,所以.

考点伸展

在本题情景下,怎样计算PB的长?

如图3,作AF⊥AB交OP于F,那么△OBC≌△OAF,OF=OC=,PF=,

PA=,所以.

文档

2015届中考数学压轴题精练:因动点产生的相似三角形问题(含2014试题...

2015届中考数学压轴题精练专题:因动点产生的相似三角形问题例12014年上海市中考第24题如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.思路点拨1.第(2)题把求∠AOM的大小,转化为求∠BOM的大小.2.因为∠BOM=∠ABO=30°,因此点C在点B的右侧时,恰好有∠AB
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top